169 research outputs found

    Factors affecting particle collection by electro-osmosis in microfluidic systems

    Get PDF
    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles

    A dielectrophoresis-impedance method for protein detection and analysis

    Get PDF
    Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule

    Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric

    Get PDF
    The present work focuses on nanowire (NW) applications as semiconducting elements in solution processable field-effect transistors (FETs) targeting large-area low-cost electronics. We address one of the main challenges related to NW deposition and alignment by using dielectrophoresis (DEP) to select multiple ZnO nanowires with the correct length, and to attract, orientate and position them in predefined substrate locations. High-performance top-gate ZnO NW FETs are demonstrated on glass substrates with organic gate dielectric layers and surround source–drain contacts. Such devices are hybrids, in which inorganic multiple single-crystal ZnO NWs and organic gate dielectric are synergic in a single system. Current–voltage (I–V) measurements of a representative hybrid device demonstrate excellent device performance with high on/off ratio of ~107, steep subthreshold swing (s-s) of ~400 mV/dec and high electron mobility of ~35 cm2 V−1 s−1 in N2 ambient. Stable device operation is demonstrated after 3 months of air exposure, where similar device parameters are extracted including on/off ratio of ~4 × 106, s-s ~500 mV/dec and field-effect mobility of ~28 cm2 V−1 s−1. These results demonstrate that DEP can be used to assemble multiples of NWs from solvent formulations to enable low-temperature hybrid transistor fabrication for large-area inexpensive electronics

    Applications of dielectrophoretic/electro-hydrodynamic “zipper” electrodes for detection of biological nanoparticles

    Get PDF
    A major problem for surface-based detection techniques such as surface plasmon resonance and quartz crystal microbalances is that at low concentrations, diffusion is an insufficient driving force to bring colloidal submicron-scale particles to the detection surface. In order to overcome this, it has previously been demonstrated that a combination of dielectrophoresis and AC-electro-hydrodynamic flow can be used to focus cell-sized particles from suspension onto a large metal surface, in order to improve the detection capabilities of such systems. In this paper we describe how the combination of these two phenomena, using the so-called “zipper” electrode array, can be used to concentrate a wide range of nanoparticles of biological interest, such as influenza virus, dissolved albumin, and DNA molecules as well as latex beads of various sizes. We also demonstrate that the speed at which particles are transported towards the centre of the electrode pads by dielectrophoresis and electro-hydrodynamic flow is not related to the particle size for colloidal particles

    Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach

    Get PDF
    A loss of ability of cells to undergo apoptosis (programmed cell death, whereby the cell ceases to function and destroys itself) is commonly associated with cancer, and many anti-cancer interventions aim to restart the process. Consequently, the accurate quantification of apoptosis is essential in understanding the function and performance of new anti-cancer drugs. Dielectrophoresis has previously been demonstrated to detect apoptosis more rapidly than other methods, and is low-cost, label-free and rapid, but has previously been unable to accurately quantify cells through the apoptotic process because cells in late apoptosis disintegrate, making cell tracking impossible. In this paper we use a novel method based on light absorbance and multi-population tracking to quantify the progress of apoptosis, benchmarking against conventional assays including MTT, trypan blue and Annexin-V. Analyses are performed on suspension and adherent cells, and using two apoptosis-inducing agents. IC50 measurements compared favourably to MTT and were superior to trypan blue, whilst also detecting apoptotic progression faster than Annexin-V
    corecore