349 research outputs found

    Monte Carlo event generator validation and tuning for the LHC

    Full text link
    We summarise the motivation for, and the status of, the tools developed by CEDAR/MCnet for validating and tuning Monte Carlo event generators for the LHC against data from previous colliders. We then present selected preliminary results from studies of event shapes and hadronisation observables from e+e- colliders, and of minimum bias and underlying event observables from the Tevatron, and comment on the approach needed with early LHC data to best exploit the potential for new physics discoveries at the LHC in the next few years.Comment: Prepared for Proceedings of XII Advanced Computing and Analysis Techniques in Physics Research, November 3-7 2008, Erice, Ital

    New developments in event generator tuning techniques

    Get PDF
    Data analyses in hadron collider physics depend on background simulations performed by Monte Carlo (MC) event generators. However, calculational limitations and non-perturbative effects require approximate models with adjustable parameters. In fact, we need to simultaneously tune many phenomenological parameters in a high-dimensional parameter-space in order to make the MC generator predictions fit the data. It is desirable to achieve this goal without spending too much time or computing resources iterating parameter settings and comparing the same set of plots over and over again. We present extensions and improvements to the MC tuning system, Professor, which addresses the aforementioned problems by constructing a fast analytic model of a MC generator which can then be easily fitted to data. Using this procedure it is for the first time possible to get a robust estimate of the uncertainty of generator tunings. Furthermore, we can use these uncertainty estimates to study the effect of new (pseudo-) data on the quality of tunings and therefore decide if a measurement is worthwhile in the prospect of generator tuning. The potential of the Professor method outside the MC tuning area is presented as well.Comment: To appear in the proceedings of the 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT2010, Jaipur, India, February 22-27, 201

    Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    Get PDF
    Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision at the Shuttle Landing Facility. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAFs), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. Both the SMG and the MLB are currently implementing the Weather Research and Forecasting Environmental Modeling System (WRF EMS) software into their operations. The WRF EMS software allows users to employ both dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model- the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, provides SMG and NWS MLB with a lot of flexibility. It also creates challenges, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and to determine which configuration will best predict warm season convective initiation in East-Central Florida. Four different combinations of WRF initializations will be run (ADAS-ARW, ADAS-NMM, LAPS-ARW, and LAPS-NMM) at a 4-km resolution over the Florida peninsula and adjacent coastal waters. Five candidate convective initiation days using three different flow regimes over East-Central Florida will be examined, as well as two null cases (non-convection days). Each model run will be integrated 12 hours with three runs per day, at 0900, 1200, and 1500 UTe. ADAS analyses will be generated every 30 minutes using Level II Weather Surveillance Radar-1988 Doppler (WSR-88D) data from all Florida radars to verify the convection forecast. These analyses will be run on the same domain as the four model configurations. To quantify model performance, model output will be subjectively compared to the ADAS analyses of convection to determine forecast accuracy. In addition, a subjective comparison of the performance of the ARW using a high-resolution local grid with 2-way nesting, I-way nesting, and no nesting will be made for select convective initiation cases. The inner grid will cover the East-Central Florida region at a resolution of 1.33 km. The authors will summarize the relative skill of the various WRF configurations and how each configuration behaves relative to the others, as well as determine the best model configuration for predicting warm season convective initiation over East-Central Florida

    An Operational Configuration of the ARPS Data Analysis System to Initialize WRF in the NM'S Environmental Modeling System

    Get PDF
    The Weather Research and Forecasting (WRF) model is the next generation community mesoscale model designed to enhance collaboration between the research and operational sectors. The NM'S as a whole has begun a transition toward WRF as the mesoscale model of choice to use as a tool in making local forecasts. Currently, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) are running the Advanced Regional Prediction System (AIRPS) Data Analysis System (ADAS) every 15 minutes over the Florida peninsula to produce high-resolution diagnostics supporting their daily operations. In addition, the NWS MLB and SMG have used ADAS to provide initial conditions for short-range forecasts from the ARPS numerical weather prediction (NWP) model. Both NM'S MLB and SMG have derived great benefit from the maturity of ADAS, and would like to use ADAS for providing initial conditions to WRF. In order to assist in this WRF transition effort, the Applied Meteorology Unit (AMU) was tasked to configure and implement an operational version of WRF that uses output from ADAS for the model initial conditions. Both agencies asked the AMU to develop a framework that allows the ADAS initial conditions to be incorporated into the WRF Environmental Modeling System (EMS) software. Developed by the NM'S Science Operations Officer (S00) Science and Training Resource Center (STRC), the EMS is a complete, full physics, NWP package that incorporates dynamical cores from both the National Center for Atmospheric Research's Advanced Research WRF (ARW) and the National Centers for Environmental Prediction's Non-Hydrostatic Mesoscale Model (NMM) into a single end-to-end forecasting system. The EMS performs nearly all pre- and postprocessing and can be run automatically to obtain external grid data for WRF boundary conditions, run the model, and convert the data into a format that can be readily viewed within the Advanced Weather Interactive Processing System. The EMS has also incorporated the WRF Standard Initialization (SI) graphical user interface (GUT), which allows the user to set up the domain, dynamical core, resolution, etc., with ease. In addition to the SI GUT, the EMS contains a number of configuration files with extensive documentation to help the user select the appropriate input parameters for model physics schemes, integration timesteps, etc. Therefore, because of its streamlined capability, it is quite advantageous to configure ADAS to provide initial condition data to the EMS software. One of the biggest potential benefits of configuring ADAS for ingest into the EMS is that the analyses could be used to initialize either the ARW or NMM. Currently, the ARPS/ADAS software has a conversion routine only for the ARW dynamical core. However, since the NIvIM runs about 2.5 times faster than the ARW, it is quite advantageous to be able to run an ADAS/NMM configuration operationally due to the increased efficiency

    Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System (AWIPS) Using Shapefiles and DGM Files

    Get PDF
    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed

    Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    Get PDF
    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB

    Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System Using Shapefiles and DGM Files

    Get PDF
    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or Denver AWIPS Risk Reduction and Requirements Evaluation (DARE) Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU) located at Cape Canaveral Air Force Station (CCAFS), Florida. The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) at Johnson Space Center, Texas and 45th Weather Squadron (45 WS) at CCAFS to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. The presentation will list the advantages and disadvantages of both file types for creating interactive graphical overlays in future AWIPS applications. Shapefiles are a popular format used extensively in Geographical Information Systems. They are usually used in AWIPS to depict static map backgrounds. A shapefile stores the geometry and attribute information of spatial features in a dataset (ESRI 1998). Shapefiles can contain point, line, and polygon features. Each shapefile contains a main file, index file, and a dBASE table. The main file contains a record for each spatial feature, which describes the feature with a list of its vertices. The index file contains the offset of each record from the beginning of the main file. The dBASE table contains records for each attribute. Attributes are commonly used to label spatial features. Shapefiles can be viewed, but not created in AWIPS. As a result, either third-party software can be installed on an AWIPS workstation, or new software must be written to create shapefiles in the correct format

    Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Get PDF
    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather feature

    Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    Get PDF
    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB

    Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    Get PDF
    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files
    • …
    corecore