569 research outputs found

    The Role Of Kinesin-2 In Navigating Microtubule Obstacles: Implications For The Regulation Of Axonal Transport

    Get PDF
    Neurons are specialized cells that transmit information through electrical and chemical signals using structural processes known as dendrites and axons. Dendrites receive information for the cell to interpret while the exceedingly long axon transmits the processed information to its target destination. To ensure the neuron properly carries out its extracellular functions, the orchestration of intracellular cargo (e.g. mitochondria) is critical. This is especially true in the axon, which can be up to a meter in length. There are many challenges involved in the spatial and temporal regulation of cargo over such vast cellular distances. In order to accomplish cargo transport between the cell body and axon terminus the neuron has developed an efficient process to overcome this challenge called axonal transport. Axonal transport utilizes a system of molecular motors coupled to cargo, creating a multi-motor complex, which walks along a set of tracks to position the cargo at the right time and place. One class of molecular motors, called kinesin, are used to traffic cargo away from the cell body and walk along microtubule tracks. These motors work in teams to navigate a complex microtubule landscape that is rich in microtubule-associated proteins (MAPs). One MAP abundantly found within the axon is called Tau and is implicated in a variety of neurodegenerative disorders (e.g. Alzheimer\u27s disease). Much attention has been focused on the kinesin-1 motor while investigating the axonal transport process. However, kinesin-2 plays an equally important role and is not as well characterized as kinesin-1. Previously, it has been demonstrated, in vitro, that Tau disrupts kinesin-1 transport, even below physiological concentrations, however, in vivo evidence suggests the contrary. Given this discrepancy, there are likely other cellular systems in place to provide the necessary navigation of Tau obstacles. One solution may involve multi-motor complexes using two kinesin family members attached to cargo, as both kinesin-1 and kinesin-2 have been observed coupled to cargo. In order to peel away the complex layers of kinesin-1 and kinesin-2 coupled cargo inside the axon, single-molecule imaging techniques were employed to observe the individual behavior of both kinesin-1 and kinesin-2, in vitro. Further, using a combination of genetic engineering, single-molecule analysis and mathematical modeling has helped elucidate differences between these two motors. Kinesin-2 was found to be insensitive to Tau obstacles, unlike kinesin-1, which is in part due to a longer region of the motor called the neck-linker. This region connects the motor domain, which interfaces with the microtubule track, to the coiled-coil stock, which interfaces with the cargo. When the neck-linker lengths were swapped between the motors their behavior in the presence of Tau also switched, and kinesin-2 became sensitive to Tau. To understand kinesin-2\u27s mechanism of navigating Tau obstacles, we looked at the lateral stepping characteristics of both motors. We observed kinesin-2\u27s lateral stepping frequency to be 2-4 fold higher than kinesin-1 and independent of the microtubule obstacle concentration. Thus, kinein-2\u27s longer neck-linker allows a more agile walk along the microtubule surface to navigate obstacles more efficiently than kinesin-1. In a multi-motor complex containing both motors, kinesin-2 is more efficient at maneuvering around MAPs while kinesin-1, which has previously been demonstrated to sustain a higher stall force, is more efficient at towing cargo. This work demonstrates how teams of directionally similar motors may work together to position cargo during axonal transport

    Near Real-Time Measurement of Forces Applied by An Optical Trap to A Rigid Cylindrical Object

    Get PDF
    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance

    Near Real-Time Measurement of Forces Applied by An Optical Trap to A Rigid Cylindrical Object

    Get PDF
    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance

    EB1 directly regulates APC-mediated actin nucleation

    Get PDF
    EB1 was discovered 25 years ago as a binding partner of the tumor suppressor Adenomatous Polyposis Coli (APC) [1]; however, the significance of EB1-APC interactions has remained poorly understood. EB1 functions at the center of a network of microtubule end-tracking proteins (+TIPs) [2–5], and APC binding to EB1 promotes EB1 association with microtubule ends and microtubule stabilization [6, 7]. Whether or not EB1 interactions govern functions of APC beyond microtubule regulation has not been explored. The C-terminal Basic domain of APC (APC-B) directly nucleates actin assembly, and this activity is required in vivo for directed cell migration and for maintaining normal levels of F-actin [8–10]. Here, we show that EB1 binds APC-B and inhibits its actin nucleation function by blocking actin monomer recruitment. Consistent with these biochemical observations, knocking down EB1 increases F-actin levels in cells, and this can be rescued by disrupting APC-mediated actin nucleation. Conversely, overexpressing EB1 decreases F-actin levels and impairs directed cell migration, without altering microtubule organization and independent of its direct binding interactions with microtubules. Overall, our results define a new function for EB1 in negatively regulating APC-mediated actin assembly. Combining these findings with other recent studies showing that APC interactions regulate EB1-dependent effects on microtubule dynamics [7], we propose that EB1-APC interactions govern bidirectional cytoskeletal crosstalk by coordinating microtubule and actin dynamics

    Atomic force microscopy differentiates discrete size distributions between membrane protein containing and empty nanolipoprotein particles

    Get PDF
    AbstractTo better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly
    • …
    corecore