3,322 research outputs found

    Scaling relations for galaxy clusters: properties and evolution

    Full text link
    Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.Comment: 38 pages. Review paper. Accepted for publication in Space Science Reviews (eds: S. Ettori, M. Meneghetti). This is a product of the work done by an international team at the International Space Science Institute (ISSI) in Bern on "Astrophysics and Cosmology with Galaxy Clusters: the X-ray and Lensing View

    Intrinsic galaxy shapes and alignments II: Modelling the intrinsic alignment contamination of weak lensing surveys

    Get PDF
    Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy shapes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.Comment: 23 pages, 14 figures; minor changes to match version published in MNRA

    Traveling-wave deceleration of SrF molecules

    Get PDF
    We report on the production, deceleration and detection of a SrF molecular beam. The molecules are captured from a supersonic expansion and are decelerated in the X2Σ+(v=0,N=1)^2\Sigma^+ (v=0, N=1) state. We demonstrate the removal of up to 40% of the kinetic energy with a 2 meter long modular traveling-wave decelerator. Our results demonstrate a crucial step towards the preparation of ultracold gases of heavy diatomic molecules for precision spectroscopy

    Diversity in the stellar velocity dispersion profiles of a large sample of Brightest Cluster Galaxies z0.3z\leq0.3

    Get PDF
    We analyse spatially-resolved deep optical spectroscopy of Brightest Cluster Galaxies (BCGs) located in 32 massive clusters with redshifts of 0.05 z\leq z \leq 0.30, to investigate their velocity dispersion profiles. We compare these measurements to those of other massive early-type galaxies, as well as central group galaxies, where relevant. This unique, large sample extends to the most extreme of massive galaxies, spanning MK_{K} between -25.7 to -27.8 mag, and host cluster halo mass M500_{500} up to 1.7 ×\times 1015^{15} M_{\odot}. To compare the kinematic properties between brightest group and cluster members, we analyse similar spatially-resolved long-slit spectroscopy for 23 nearby Brightest Group Galaxies (BGGs) from the Complete Local-Volume Groups Sample (CLoGS). We find a surprisingly large variety in velocity dispersion slopes for BCGs, with a significantly larger fraction of positive slopes, unique compared to other (non-central) early-type galaxies as well as the majority of the brightest members of the groups. We find that the velocity dispersion slopes of the BCGs and BGGs correlate with the luminosity of the galaxies, and we quantify this correlation. It is not clear whether the full diversity in velocity dispersion slopes that we see is reproduced in simulations.Comment: 25 pages, 17 figures, accepted for publication in MNRA

    Multiwavelength Mass Comparisons of the z~0.3 CNOC Cluster Sample

    Get PDF
    Results are presented from a detailed analysis of optical and X-ray observations of moderate-redshift galaxy clusters from the Canadian Network for Observational Cosmology (CNOC) subsample of the EMSS. The combination of extensive optical and deep X-ray observations of these clusters make them ideal candidates for multiwavelength mass comparison studies. X-ray surface brightness profiles of 14 clusters with 0.17<z<0.55 are constructed from Chandra observations and fit to single and double beta-models. Spatially resolved temperature analysis is performed, indicating that five of the clusters in this sample exhibit temperature gradients within their inner 60-200 kpc. Integrated spectra extracted within R_2500 provide temperature, abundance, and luminosity information. Under assumptions of hydrostatic equilibrium and spherical symmetry, we derive gas and total masses within R_2500 and R_200. We find an average gas mass fraction within R_200 of 0.136 +/- 0.004, resulting in Omega_m=0.28 +/- 0.01 (formal error). We also derive dynamical masses for these clusters to R_200. We find no systematic bias between X-ray and dynamical methods across the sample, with an average M(dyn)/M(X-ray) = 0.97 +/- 0.05. We also compare X-ray masses to weak lensing mass estimates of a subset of our sample, resulting in a weighted average of M(lens)/M(X-ray) of 0.99 +/- 0.07. We investigate X-ray scaling relationships and find powerlaw slopes which are slightly steeper than the predictions of self-similar models, with an E(z)^(-1) Lx-Tx slope of 2.4 +/- 0.2 and an E(z) M_2500-Tx slope of 1.7 +/- 0.1. Relationships between red-sequence optical richness (B_gc,red) and global cluster X-ray properties (Tx, Lx and M_2500) are also examined and fitted.Comment: Astrophysical Journal, 48 pages, 11 figures, LaTeX. Added correction to surface brightness normalization of MS1512.4+3647, corrections to sample gas mass fractions and calculated value of Omega_m. Figure resolution has been reduced to comply with astro-ph upload requirement

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure

    Value chain opportunities for women and young people in livestock production in Ethiopia: Lessons learned

    Get PDF
    Both young people and women contribute significantly to agricultural production in the African continent, although these contributions are not usually explicitly recognized in official statistics and documents. In Ethiopia, women traditionally have been subject to sociocultural and economic discrimination that resulted in fewer economic, educational and social opportunities than men. The traditional development approaches that view the household as a unitary decision-making entity and the assumption that interventions targeted at the household head would trickle down to household members is the foundation of the exclusion of women and young people. In particular, women in married households are usually excluded from development interventions. Many governments in Africa have now started to take policy measures to recognize and enhance the contributions of young people and women in economic growth on the continent. Similarly, there seems to be strong political commitment in Ethiopia to ensure inclusive economic growth that will result in better gender equality and benefit young people. This working paper summarizes the lessons from the experiences of the Improving productivity and market success for Ethiopian smallholders and Livestock and irrigation value chains for Ethiopian smallholders projects in inclusive value chain development aimed at benefiting women and young people. It mainly focuses on the trajectories of the two projects in reaching out to women and young people in order to increase their access to resources, innovation, technologies and knowledge which could consequently improve their inclusion in and benefits from value chain development and governance. Experiences from innovative extension methods for inclusion are discussed. The paper makes recommendations for policy and development practice to improve benefits to women and young people from development interventions
    corecore