96 research outputs found

    Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (<it>Pinus muricata </it>D. Don) and one of its common ectomycorrhizal fungi (<it>Rhizopogon occidentalis </it>Zeller and Dodge) varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions.</p> <p>Results</p> <p>We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families), fungal lineage (two spore collections), soil type (lab mix or field soil), and non-mycorrhizal microbes (with or without) on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors.</p> <p>Conclusion</p> <p>These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species.</p

    Tree thinning and fire affect ectomycorrhizal fungal communities and enzyme activities

    Get PDF
    Common ecological restoration treatments such as thinning trees and prescribed burning could result in changes to soil fungal communities and changes to the function of those communities. Ectomycorrhizal fungi are especially likely to be affected as they are symbionts on plant roots and exhibit host and niche preferences. Ectomycorrhizal fungi also produce extracellular enzymes that are important in soil nutrient cycling. We conducted a community survey of ectomycorrhizal fungi and assayed ectomycorrhizal root tip enzyme activity using substrate plugs in northern Mississippi upland oak–pine woodland plots differing in restoration history to explore the influence of woodland restoration on ectomycorrhizalfungal community composition and function. Restoration treatment was significant in explaining the occurrence of the most common fungal species (Russula xerampelina) and the most common family (Thelephoraceae) in the ectomycorrhizal fungal community survey. Highest potential laccase, peroxidase, and N-acetyl-b-D-glucosaminidase enzyme activity were found in a prescribed burn plot, and the lowest enzyme activities at a wildfire plot, where richness of ectomycorrhizal fungi was also lower. Different fungal families displayed significantly different enzymatic capabilities, with Hydnangiaceae having the highest laccase activity and Tuberaceae having significantly higher peroxidase and chitinase activity than several other families. These results suggest that restoration treatments can affect ectomycorrhizal fungal community composition and function, and better understanding these changes can aid understanding of the niches of ectomycorrhizal fungi and the impacts of restoration

    Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences

    Get PDF
    Introductions and invasions by fungi, especially pathogens and mycorrhizal fungi, are widespread and potentially highly consequential for native ecosystems, but may also offer opportunities for linking microbial traits to their ecosystem functions. In particular, treating ectomycorrhizal (EM) invasions, i.e., co-invasions by EM fungi and their EM host plants, as natural experiments may offer a powerful approach for testing how microbial traits influence ecosystem functions. Forests dominated by EM symbiosis have unique biogeochemistry whereby the secretions of EM plants and fungi affect carbon (C) and nutrient cycling; moreover, particular lineages of EM fungi have unique functional traits. EM invasions may therefore alter the biogeochemistry of the native ecosystems they invade, especially nitrogen (N) and C cycling. By identifying “response traits” that favor the success of fungi in introductions and invasions (e.g., spore dispersal and germination) and their correlations with “effect traits” (e.g., nutrient-cycling enzymes) that can alter N and C cycling (and affect other coupled elemental cycles), one may be able to predict the functional consequences for ecosystems of fungal invasions using biogeochemistry models that incorporate fungal traits. Here, we review what is already known about how EM fungal community composition, traits, and ecosystem functions differ between native and exotic populations, focusing on the example of EM fungi associated with species of Pinus introduced from the Northern into the Southern Hemisphere. We develop hypotheses on how effects of introduced and invasive EM fungi may depend on interactions between soil N availability in the exotic range and EM fungal traits. We discuss how such hypotheses could be tested by utilizing Pinus introductions and invasions as a model system, especially when combined with controlled laboratory experiments. Finally, we illustrate how ecosystem modeling can be used to link fungal traits to their consequences for ecosystem N and C cycling in the context of biological invasions, and we highlight exciting avenues for future directions in understanding EM invasion.Fil: Hoeksema, Jason D.. University of Mississippi; Estados UnidosFil: Averill, Colin. No especifĂ­ca;Fil: Bhatnagar, Jennifer M.. Boston University; Estados UnidosFil: Brzostek, Edward. West Virginia University; Estados UnidosFil: Buscardo, Erika. Universidade do BrasĂ­lia; BrasilFil: Chen, Ko Hsuan. University of Florida; Estados UnidosFil: Liao, Hui Ling. University of Florida; Estados UnidosFil: Nagy, Laszlo. Universidade Estadual de Campinas; BrasilFil: Policelli, Nahuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ridgeway, Joanna. West Virginia University; Estados UnidosFil: Rojas, J. Alejandro. University of Arkansas for Medical Sciences; Estados UnidosFil: Vilgalys, Rytas. University of Duke; Estados Unido

    Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant–soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: theory spanning scales and ecological hierarchies, processes, and evolution

    Beyond the black box: Promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    © 2019 The Authors. Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant-soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: Theory spanning scales and ecological hierarchies, processes, and evolution
    • 

    corecore