276 research outputs found

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac

    First Measurement of the Tensor Structure Function b1b_1 of the Deuteron

    Full text link
    The \Hermes experiment has investigated the tensor spin structure of the deuteron using the 27.6 GeV/c positron beam of \Hera. The use of a tensor polarized deuteron gas target with only a negligible residual vector polarization enabled the first measurement of the tensor asymmetry \At and the tensor structure function \bd for average values of the Bj{\o}rken variable 0.01<0.450.01<0.45 and of the squared four-momentum transfer 0.5GeV2<5GeV20.5 {\rm GeV^2} <5 {\rm GeV^2}. The quantities \At and \bd are found to be non-zero. The rise of \bd for decreasing values of xx can be interpreted to originate from the same mechanism that leads to nuclear shadowing in unpolarized scattering

    Flavor decomposition of the sea quark helicity distributions in the nucleon from semi-inclusive deep-inelastic scattering

    Full text link
    Double-spin asymmetries of semi-inclusive cross sections for the production of identified pions and kaons have been measured in deep-inelastic scattering of polarized positrons on a polarized deuterium target. Five helicity distributions including those for three sea quark flavors were extracted from these data together with re-analyzed previous data for identified pions from a hydrogen target. These distributions are consistent with zero for all three sea flavors. A recently predicted flavor asymmetry in the polarization of the light quark sea appears to be disfavored by the data.Comment: 5 pages, 3 figure

    Search for an exotic S=-2, Q=-2 baryon resonance at a mass near 1862 MeV in quasi-real photoproduction

    Full text link
    A search for an exotic baryon resonance with S=2,Q=2S=-2, Q=-2 has been performed in quasi-real photoproduction on a deuterium target through the decay channel ΞπΛππpπππ\Xi^- \pi^- \to \Lambda \pi^- \pi^- \to p \pi^- \pi^- \pi^-. No evidence for a previously reported Ξ(1860)\Xi^{--}(1860) resonance is found in the Ξπ\Xi^- \pi^-invariant mass spectrum. An upper limit for the photoproduction cross section of 2.1 nb is found at the 90% confidence level. The photoproduction cross section for the Ξ0(1530)\Xi^{0}(1530) is found to be between 9 and 24 nb

    Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target

    Full text link
    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ\phi) and the target spin axis (ϕS\phi_S) about the virtual photon direction and relative to the lepton scattering plane. The extracted Fourier component \cmpi is a signal of the previously unmeasured quark transversity distribution, in conjunction with the so-called Collins fragmentation function, also unknown. The Fourier component \smpi of the asymmetry arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson productio

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small

    Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering

    Full text link
    Polarized deep--inelastic scattering data on longitudinally polarized hydrogen and deuterium targets have been used to determine double spin asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for the production of positive and negative pions from hydrogen were obtained in a re--analysis of previously published data. Inclusive and semi--inclusive asymmetries for the production of negative and positive pions and kaons were measured on a polarized deuterium target. The separate helicity densities for the up and down quarks and the anti--up, anti--down, and strange sea quarks were computed from these asymmetries in a ``leading order'' QCD analysis. The polarization of the up--quark is positive and that of the down--quark is negative. All extracted sea quark polarizations are consistent with zero, and the light quark sea helicity densities are flavor symmetric within the experimental uncertainties. First and second moments of the extracted quark helicity densities in the measured range are consistent with fits of inclusive data
    corecore