399 research outputs found
Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e
[Abridged] The aim of this work is to search for an absorption signal from
exospheric sodium (Na) and singly ionized calcium (Ca) in the optical
transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the
current best-fitting models to the planet mass and radius require a possible
atmospheric component, uncertainties in the radius exist, making it possible
that 55 Cancri e could be a hot rocky planet without an atmosphere. High
resolution (R110000) time-series spectra of five transits of 55 Cancri e,
obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m &
HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and
K lines, the potential planet exospheric signal was filtered out from the much
stronger stellar and telluric signals, making use of the change of the radial
component of the orbital velocity of the planet over the transit from -57 to
+57 km/sec. Combining all five transit data sets, we detect a signal
potentially associated with sodium in the planet exosphere at a statistical
significance level of 3. Combining the four HARPS transits that cover
the calcium H and K lines, we also find a potential signal from ionized calcium
(4.1 ). Interestingly, this latter signal originates from just one of
the transit measurements - with a 4.9 detection at this epoch.
Unfortunately, due to the low significance of the measured sodium signal and
the potentially variable Ca signal, we estimate the p-values of these
signals to be too high (corresponding to <4) to claim unambiguous
exospheric detections. By comparing the observed signals with artificial
signals injected early in the analysis, the absorption by Na and Ca are
estimated to be at a level of approximately 2.3 and 7.0 respectively, relative to the stellar spectrum.Comment: 15 pages, 8 figures, submission updated after English language
editing, submission updated to correct a mistaken cross-reference noticed in
A&A proo
A spectral survey of an ultra-hot Jupiter: Detection of metals in the transmission spectrum of KELT-9 b
Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous
exoplanets that tend to orbit hot, early type stars - termed ultra-hot
Jupiters. The severe stellar irradiation heats their atmospheres to
temperatures of K, similar to the photospheres of dwarf stars. Due
to the absence of aerosols and complex molecular chemistry at such
temperatures, these planets offer the potential of detailed chemical
characterisation through transit and day-side spectroscopy. Studies of their
chemical inventories may provide crucial constraints on their formation process
and evolution history.
Aims: To search the optical transmission spectrum of KELT-9 b for absorption
lines by metals using the cross-correlation technique.
Methods: We analyse 2 transits observed with the HARPS-N spectrograph. We use
an isothermal equilibrium chemistry model to predict the transmission spectrum
for each of the neutral and singly-ionized atoms with atomic numbers between 3
and 78. Of these, we identify the elements that are expected to have spectral
lines in the visible wavelength range and use those as cross-correlation
templates.
Results: We detect absorption of Na I, Cr II, Sc II and Y II, and confirm
previous detections of Mg I, Fe I, Fe II and Ti II. In addition, we find
evidence of Ca I, Cr I, Co I, and Sr II that will require further observations
to verify. The detected absorption lines are significantly deeper than model
predictions, suggesting that material is transported to higher altitudes where
the density is enhanced compared to a hydrostatic profile. There appears to be
no significant blue-shift of the absorption spectrum due to a net day-to-night
side wind. In particular, the strong Fe II feature is shifted by km~s, consistent with zero. Using the orbital velocity of the
planet we revise the steller and planetary masses and radii.Comment: Submitted to Astronomy and Astrophysics on January 18, 2019. Accepted
on May 3, 2019. 26 pages, 11 figure
An atlas of resolved spectral features in the transmission spectrum of WASP-189 b with MAROON-X
Exoplanets in the ultra-hot Jupiter regime provide an excellent laboratory
for testing the impact of stellar irradiation on the dynamics and chemical
composition of gas giant atmospheres. In this study, we observed two transits
of the ultra-hot Jupiter WASP-189 b with MAROON-X/Gemini-North to probe its
high-altitude atmospheric layers, using strong absorption lines. We derived
posterior probability distributions for the planetary and stellar parameters by
calculating the stellar spectrum behind the planet at every orbital phase
during the transit. This was used to correct the Rossiter-McLaughlin imprint on
the transmission spectra. Using differential transmission spectroscopy, we
detect strong absorption lines of Ca+, Ba+, Na, H, Mg, Fe, and Fe+,
providing an unprecedented and detailed view of the atmospheric chemical
composition. Ca+ absorption is particularly well suited for analysis through
time-resolved narrow-band spectroscopy, owing to its transition lines formed in
high-altitude layers. The spectral absorption lines show no significant
blueshifts that would indicate high-altitude day-to-night winds, and further
analysis is needed to investigate the implications for atmospheric dynamics.
These high signal-to-noise observations provide a benchmark data set for
testing high-resolution retrievals and the assumptions of atmospheric models.
We also simulate observations of WASP-189 b with ANDES/ELT, and show that ANDES
will be highly sensitive to the individual absorption lines of a myriad of
elements and molecules, including TiO and CO.Comment: 34 pages, 31 figures, accepted for publication in A&A on 16 February
202
Fasting before living-kidney donation:effect on donor well-being and postoperative recovery: study protocol of a multicenter randomized controlled trial
BACKGROUND: One of the main effectors on the quality of life of living-kidney donors is postoperative fatigue. Caloric restriction (CR) and short-term fasting (STF) are associated with improved fitness and increased resistance to acute stress. CR/STF increases the expression of cytoprotective genes, increases immunomodulation via increased anti-inflammatory cytokine production, and decreases the expression of pro-inflammatory markers. As such, nutritional preconditioning by CR or STF represents a non-invasive and cost-effective method that could mitigate the effects of acute surgery-induced stress and postoperative fatigue. To investigate whether preoperative STF contributes to a reduction in fatigue after living-kidney donation, a randomized clinical trial is indicated. METHODS: We aim to determine whether 2.5 days of fasting reduces postoperative fatigue score in subjects undergoing living-kidney donation. In this randomized study, the intervention group will follow a preoperative fasting regime for 2.5 days with a low-dose laxative, while the control group will receive standard care. The main study endpoint is postoperative fatigue, 4 weeks after living-kidney donation. Secondary endpoints include the effect of preoperative fasting on postoperative hospital admission time, the feasibility of STF, and the postoperative recovery of donor and recipient kidney function. This study will provide us with knowledge of the feasibility of STF and confirm its effect on postoperative recovery. DISCUSSION: Our study will provide clinically relevant information on the merits of caloric restriction for living-kidney donors and recipients. We expect to reduce the postoperative fatigue in living-kidney donors and improve the postoperative recovery of living-kidney recipients. It will provide evidence on the clinical merits and potential caveats of preoperative dietary interventions. TRIAL REGISTRATION: Netherlands Trial Register NL9262. EudraCT 2020-005445-16. MEC Erasmus MC MEC-2020-0778. CCMO NL74623.078.21 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-021-05950-x
Priming of microglia in a DNA-repair deficient model of accelerated aging
AbstractAging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state
Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1−/Δ7 Mice
textabstractAlthough it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-week bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1-/Δ7 mice, which have a median lifespan of ~20 weeks, and their wild-type littermates. The colonic barrier in Ercc1-/Δ7 mice was characterized by a thin (< 10 μm) mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1-/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1-/Δ7 mice. L. plantarum- and L. casei-treated Ercc1-/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum - but not with L. casei and B. breve - prevented the decline in the mucus barrier in Ercc1-/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly
Fluorescence correlation spectroscopy of the binding of nucleotide excision repair protein XPC-hHr23B with DNA substrates
The interaction of the nucleotide excision repair (NER) protein dimeric complex XPC-hHR23B, which is implicated in the DNA damage recognition step, with three Cy3.5 labeled 90-bp double-stranded DNA substrates (unmodified, with a central unpaired region, and cholesterol modified) and a 90-mer single-strand DNA was investigated in solution by fluorescence correlation spectroscopy. Autocorrelation functions obtained in the presence of an excess of protein show larger diffusion times (τ d) than for free DNA, indicating the presence of DNA-protein bound complexes. The fraction of DNA bound (θ), as a way to describe the percentage of protein bound to DNA, was directly estimated from FCS data. A significantly stronger binding capability for the cholesterol modified substrate (78% DNA bound) than for other double-stranded DNA substrates was observed, while the lowest affinity was found for the single-stranded DNA (27%). This is in accordance with a damage recognition role of the XPC protein. The similar affinity of XPC for undamaged and 'bubble' DNA sub
Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome
Cockayne syndrome (CS) is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER). Here, complete inactivation of NER in Csb(m/m)/Xpa(−/−) mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn Csb(m/m)/Xpa(−/−) mice display attenuated growth, progressive neurological dysfunction, retinal degeneration, cachexia, kyphosis, and die before weaning. Mouse liver transcriptome analysis and several physiological endpoints revealed systemic suppression of the growth hormone/insulin-like growth factor 1 (GH/IGF1) somatotroph axis and oxidative metabolism, increased antioxidant responses, and hypoglycemia together with hepatic glycogen and fat accumulation. Broad genome-wide parallels between Csb(m/m)/Xpa(−/−) and naturally aged mouse liver transcriptomes suggested that these changes are intrinsic to natural ageing and the DNA repair–deficient mice. Importantly, wild-type mice exposed to a low dose of chronic genotoxic stress recapitulated this response, thereby pointing to a novel link between genome instability and the age-related decline of the somatotroph axis
A spectral survey of an ultra-hot Jupiter
Context. KELT-9 b exemplifies a newly emerging class of short-period gaseous exoplanets that tend to orbit hot, early type stars – termed ultra-hot Jupiters. The severe stellar irradiation heats their atmospheres to temperatures of ~4000 K, similar to temperatures of photospheres of dwarf stars. Due to the absence of aerosols and complex molecular chemistry at such temperatures, these planets offer the potential of detailed chemical characterization through transit and day-side spectroscopy. Detailed studies of their chemical inventories may provide crucial constraints on their formation process(es) and evolution history.
Aims. We aim to search the optical transmission spectrum of KELT-9 b for absorption lines by metals using the cross-correlation technique.
Methods. We analysed two transit observations obtained with the HARPS-N spectrograph. We used an isothermal equilibrium chemistry model to predict the transmission spectrum for each of the neutral and singly ionized atoms with atomic numbers between three and 78. Of these, we identified the elements that are expected to have spectral lines in the visible wavelength range and used those as cross-correlation templates.
Results. We detect (>5σ) absorption by Na I, Cr II, Sc II and Y II, and confirm previous detections of Mg I, Fe I, Fe II, and Ti II. In addition, we find evidence of Ca I, Cr I, Co I, and Sr II that will require further observations to verify. The detected absorption lines are significantly deeper than predicted by our model, suggesting that the material is transported to higher altitudes where the density is enhanced compared to a hydrostatic profile, and that the material is part of an extended or outflowing envelope. There appears to be no significant blue-shift of the absorption spectrum due to a net day-to-night side wind. In particular, the strong Fe II feature is shifted by 0.18 ± 0.27 km s−1, consistent with zero. Using the orbital velocity of the planet we derive revised masses and radii of the star and the planet: M* = 1.978 ± 0.023 M⊙, R* = 2.178 ± 0.011 R⊙, mp = 2.44 ± 0.70 MJ and Rp = 1.783 ± 0.009 RJ
- …