92 research outputs found

    The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium

    Get PDF
    Background The importance of flagella and chemotaxis genes in host pathogen interaction in Salmonella enterica is mainly based on studies of the broad host range serovar, S. Typhimurium, while little is known on the importance in host specific and host adapted serovars, such as S. Dublin. In the current study we have used previously characterized insertion mutants in flagella and chemotaxis genes to investigate this and possible differences in the importance between the two serovars. Results fliC (encoding the structural protein of the flagella) was essential for adhesion and fliC and cheB (CheB restores the chemotaxis system to pre-stimulus conformation) were essential for invasion of S. Dublin into epithelial Int407 cells. In S. Typhimurium, both lack of flagella (fliC/fljB double mutant) and cheB influenced adhesion, and invasion was influenced by lack of both cheA (the histidine-kinase of the chemotaxis system), fliC/fljB and cheB mutation. Uptake in J774A.1 macrophage cells was significantly reduced in cheA, cheB and fliC mutants of S. Dublin, while cheA was dispensable in S. Typhimurium. Removal of flagella in both serotypes caused an increased ability to propagate intracellular in J774 macrophage cells and decreased cytotoxicity toward these cells. Flagella and chemotaxis genes were found not to influence the oxidative response. The induction of IL-6 from J774A-1 cells depended on the presence of flagella in S. Typhimurium, whilst this was not the case following challenge with S. Dublin. Addition of fliC from S. Typhimurium in trans to a fliC mutant of S. Dublin increased cytotoxicity but it did not increase the IL-6 production. Flagella were demonstrated to contribute to the outcome of infection following oral challenge of mice in S. Dublin, while an S. Typhimurium fliC/fljB mutant showed increased virulence following intra peritoneal challenge. Conclusions The results showed that flagella and chemotaxis genes differed in their role in host pathogen interaction between S. Dublin and S. Typhimurium. Notably, lack of flagella conferred a more virulent phenotype in S. Typhimurium at systemic sites, while this was not the case in S. Dublin. In vitro assays suggested that this could be related to flagella-induced induction of the IL-6 pro-inflammatory response, but further in vivo studies are needed to confirm this

    The influence of long-term treadmill exercise on bone mass and articular cartilage in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of bone quality and deterioration of articular cartilage are commonly seen after menopause. While exercise may protect against tissue degeneration, a clear link has yet to be established. The aim of the present study is to investigate the influence of long-term treadmill exercise on changes in bone mass and articular cartilage in ovariectomized rats.</p> <p>Methods</p> <p>Sixty female Sprague-Dawley rats were randomly assigned to 4 groups: ovariectomized (OVX), ovariectomized plus treadmill exercise (OVX-RUN), treadmill exercise alone (RUN), and control (CON) groups. After 36 weeks, the following variables were compared among the 4 groups. Bone mass was evaluated by trabecular bone volume and bone mineral density (BMD). Articular cartilage in the knee joints was evaluated by histology analysis and a modified Mankin score.</p> <p>Results</p> <p>Rats in the ovariectomized groups (OVX and OVX-RUN) had significantly lower BMD and bone mass than the non-ovariectomized rats (CON and RUN), indicating that exercise did little to preserve bone mass. However, the sedentary OVX group had a significantly worse modified Mankin score (7.7 ± 1.4) than the OVX-RUN group (4.8 ± 1.0), whose scores did not differ significantly from the other 2 non-operated groups. The articular cartilage in the sedentary OVX rats was relatively thinner, hypocellular, and had more clefts than in the other 3 groups.</p> <p>Conclusion</p> <p>This study suggests that long-term exercise protects articular cartilage in OVX rats but does not retard the loss of bone mass seen in after menopause.</p

    A microarray analysis of full depth knee cartilage of ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This short communication focuses the on articular cartilage and the subchondral bone, both of which play important roles in the development of osteoarthritis (OA). There are indications that estrogen-deficiency, as the post-menopausal state, accelerate the development of OA.</p> <p>Findings</p> <p>We investigated, which extracellular matrix (ECM) protein, proteases and different pro-inflammatory factors was up- or down-regulated in the knee joint tissue in response to estrogen-deficiency in rats induced by ovariectomy. These data support previous findings that several metalloproteinases (MMPs) and cysteine proteases are co-regulated with numerous collagens and proteoglycans that are important for cartilage integrity. Furthermore quite a few pro-inflammatory cytokines were regulated by estrogen deprivation.</p> <p>Conclusion</p> <p>We found multiple genes where regulated in the joint by estrogen-deficiency, many of which correspond well with our current knowledge of the pathogenesis of OA. It supports that estrogen-deficiency (e.g. OVX) may accelerate joint deterioration. However, there are also data that draw attention the need for better understanding of the synergy between proteases and tissue turnover.</p

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis

    Get PDF
    Introduction: Oestrogen depletion may influence onset and/or progression of osteoarthritis. We investigated in an ovariectomized mouse model the impact of oestrogen loss and oestrogen supplementation on articular cartilage and subchondral bone in tibia and patella, and assessed bone changes in osteoarthritis development.Methods: C3H/HeJ mice were divided into four groups: sham-operated, oestrogen depletion by ovariectomy (OVX), OVX with estradiol supplementation (OVX+E) and OVX with bisphosphonate (OVX+BP). Each mouse had one knee injected with low-dose iodoacetate (IA), and the contralateral knee was injected with saline. Cartilage was analysed histologically 12 weeks postsurgery; bone changes were monitored over time using in vivo micro-computed tomography.Results: In tibiae, OVX alone failed to induce cartilage damage, but OVX and IA combination significantly induced cartilage damage. In patellae, OVX alone induced significant cartilage damage, whic

    Aromatase inhibitor-associated bone and musculoskeletal effects: new evidence defining etiology and strategies for management

    Get PDF
    Aromatase inhibitors are widely used as adjuvant therapy in postmenopausal women with hormone receptor-positive breast cancer. While the agents are associated with slightly improved survival outcomes when compared to tamoxifen alone, bone and musculoskeletal side effects are substantial and often lead to discontinuation of therapy. Ideally, the symptoms should be prevented or adequately treated. This review will focus on bone and musculoskeletal side effects of aromatase inhibitors, including osteoporosis, fractures, and arthralgias. Recent advances have been made in identifying potential mechanisms underlying these effects. Adequate management of symptoms may enhance patient adherence to therapy, thereby improving breast cancer-related outcomes
    corecore