26 research outputs found

    Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1

    Get PDF
    BACKGROUND: Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1. RESULTS: We applied a proteomics approach using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by mass spectrometric (matrix-assisted laser desorption/ionization-time of flight) identification and quantification of hypothetical proteins using specific software. Hippocampi of wild type, hemizygous and homozygous SOD1 transgenic mice (SOD1-TGs) were analysed. We identified fourteen hypothetical proteins in mouse hippocampus. Of these, expression levels of 2610008O03Rik protein (Q9D0K2) and 4632432E04Rik protein (Q9D358) were significantly decreased (P < 0.05 and 0.001) and hypothetical protein (Q99KP6) was significantly increased (P < 0.05) in hippocampus of SOD1-TGs as compared with non-transgenic mice. CONCLUSIONS: The biological meaning of aberrant expression of these proteins may be impairment of metabolism, signaling and transcription machinery in SOD1-TGs brain that in turn may help to explain deterioration of these systems in DS brain

    A Novel Heterocyclic Compound CE-104 Enhances Spatial Working Memory in the Radial Arm Maze in Rats and Modulates the Dopaminergic System

    Get PDF
    Various psychostimulants targeting monoamine neurotransmitter transporters (MAT) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthetized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT (DAT – dopamine transporter, SERT – serotonin transporter and NET – norepinephrine transporter) was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88µM) and norepinephrine uptake (IC50: 160.40µM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3 and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on dopamine transporter and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM

    Comprehensive identification of age-related lipidome changes in rat amygdala during normal aging

    No full text
    <div><p>Brain lipids are integral components of brain structure and function. However, only recent advancements of chromatographic techniques together with mass spectrometry allow comprehensive identification of lipid species in complex brain tissue. Lipid composition varies between the individual areas and the majority of previous reports was focusing on individual lipids rather than a lipidome. Herein, a mass spectrometry-based approach was used to evaluate age-related changes in the lipidome of the rat amygdala obtained from young (3 months) and old (20 months) males of the Sprague-Dawley rat strain. A total number of 70 lipid species with significantly changed levels between the two animal groups were identified spanning four main lipid classes, i.e. glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. These included phospholipids with pleiotropic brain function, such as derivatives of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. The analysis also revealed significant level changes of phosphatidic acid, diacylglycerol, sphingomyelin and ceramide that directly represent lipid signaling and affect amygdala neuronal activity. The amygdala is a crucial brain region for cognitive functions and former studies on rats and humans showed that this region changes its activity during normal aging. As the information on amygdala lipidome is very limited the results obtained in the present study represent a significant novelty and may contribute to further studies on the role of lipid molecules in age-associated changes of amygdala function.</p></div

    The summary of identified lipid species with significantly changed levels in the amygdalae of aged rats in compare to young individuals.

    No full text
    <p>The summary of identified lipid species with significantly changed levels in the amygdalae of aged rats in compare to young individuals.</p

    Level changes of the molecular species of hexosylceramides (HexCer) and alkyl-/acylglycerophospholipids (aPC) significantly dysregulated in the amygdalae of aged vs. young rats.

    No full text
    <p>Individual lipid molecules were differentially regulated based on length and saturation of fatty acyl chains. Lipid species are denoted as AA X:Y based on the abbreviation of lipid molecule (AA), the total number of carbons (X) and the total number of double bonds (Y) in their acyl side chains. The values are represented as base 2 logarithm of the aged vs. young ratio of averaged peak areas ± SEM.</p

    Level changes of important signaling lipids dysregulated in the amygdalae of aged vs. young rats.

    No full text
    <p>Several molecules of glycerophospholipids (first graph): phosphatidic acid (PA), diacylglycerols (DG) and glycerophosphocholines (PC), and members of sphingolipids (second graph): sphingomyelins (SM), ceramides (Cer) and its derivatives hexosylceramides, hexosyldihydroceramides (HexDHCer) and dihydroceramides (DHCer) have shown significantly different levels in the amygdalae of aged as compared to young rats. Lipid species are denoted as AA X:Y based on the abbreviation of lipid molecule (AA), the total number of carbons (X) and the total number of double bonds (Y) in their acyl side chains. The values are represented as base 2 logarithm of the old/young ratio of averaged peak areas ± SEM.</p

    Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1

    No full text
    Abstract Background Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1. Results We applied a proteomics approach using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by mass spectrometric (matrix-assisted laser desorption/ionization-time of flight) identification and quantification of hypothetical proteins using specific software. Hippocampi of wild type, hemizygous and homozygous SOD1 transgenic mice (SOD1-TGs) were analysed. We identified fourteen hypothetical proteins in mouse hippocampus. Of these, expression levels of 2610008O03Rik protein (Q9D0K2) and 4632432E04Rik protein (Q9D358) were significantly decreased (P P Conclusions The biological meaning of aberrant expression of these proteins may be impairment of metabolism, signaling and transcription machinery in SOD1-TGs brain that in turn may help to explain deterioration of these systems in DS brain.</p
    corecore