3,620 research outputs found
Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis
Extrapolating the properties of individual CNTs into macro-scale CNT materials using a continuous and cost effective process offers enormous potential for a variety of applications. The floating catalyst chemical vapor deposition (FCCVD) method discussed in this paper bridges the gap between generating nano- and macro-scale CNT material and has already been adopted by industry for exploitation. A deep understanding of the phenomena occurring within the FCCVD reactor is thereby key to producing the desired CNT product and successfully scaling up the process further. This paper correlates information on decomposition of reactants, axial catalyst nanoparticle dynamics and the morphology of the resultant CNTs and shows how these are strongly related to the temperature and chemical availability within the reactor. For the first time, in-situ measurements of catalyst particle size distributions coupled with reactant decomposition profiles and a detailed axial SEM study of formed CNT materials reveal specific domains that have important implications for scale-up. A novel observation is the formation, disappearance and reformation of catalyst nanoparticles along the reactor axis, caused by their evaporation and re-condensation and mapping of different CNT morphologies as a result of this process.The authors thank Qflo Ltd for providing funding towards this research, C. Hoecker additionally thanks Churchill College Cambridge for financial support, M. Bajada gratefully acknowledges financial support through the 'Master it! Scholarship Scheme'.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1016/j.carbon.2015.09.05
Can the Renormalization Group Improved Effective Potential be used to estimate the Higgs Mass in the Conformal Limit of the Standard Model?
We consider the effective potential in the standard model with a single
Higgs doublet in the limit that the only mass scale present is
radiatively generated. Using a technique that has been shown to determine
completely in terms of the renormalization group (RG) functions when using the
Coleman-Weinberg (CW) renormalization scheme, we first sum leading-log (LL)
contributions to using the one loop RG functions, associated with five
couplings (the top quark Yukawa coupling , the quartic coupling of the Higgs
field , the SU(3) gauge coupling , and the couplings
and ). We then employ the two loop RG functions with the three couplings
, , to sum the next-to-leading-log (NLL) contributions to and
then the three to five loop RG functions with one coupling to sum all the
contributions to . In order to compute these sums, it is
necessary to convert those RG functions that have been originally computed
explicitly in the minimal subtraction (MS) scheme to their form in the CW
scheme. The Higgs mass can then be determined from the effective potential: the
result is decreases to at
order and at order. No reasonable
estimate of can be made at orders or . This is taken
to be an indication that this mechanism for spontaneous symmetry breaking is in
fact viable, though one in which there is slow convergence towards the actual
value of . The mass is argued to be an upper bound on
.Comment: 24 pages, 5 figures. Updated version contains new discussion,
references, figures, and corrects errors in reference
Searching for physics beyond the Standard Model through the dipole interaction
The magnetic dipole interaction played a central role in the development of
QED, and continued in that role for the Standard Model. The muon anomalous
magnetic moment has served as a benchmark for models of new physics, and the
present experimental value is larger than the standard-model value by more than
three standard deviations. The electric dipole moment (EDM) violates parity
({}) and time-reversal ({}) symmetries, and in the context of the
theorem, the combination of charge conjugation and parity (). Since a new
source of {} violation outside of that observed in the and meson
systems is needed to help explain the baryon asymmetry of the universe,
searches for EDMs are being carried out worldwide on a number of systems. The
standard-model value of the EDM is immeasurably small, so any evidence for an
EDM would signify the observation of new physics. Unique opportunities exist
for EDM searches using polarized proton, deuteron or muon beams in storage
rings. This talk will provide an overview of the theory of dipole moments, and
the relevant experiments. The connection to the transition dipole moment that
could produce lepton flavor violating interactions such as is also mentioned.Comment: Invited Plenary talk at the 19th International Spin Physics
Symposium, Juelic
Averages of b-hadron Properties at the End of 2005
This article reports world averages for measurements on b-hadron properties
obtained by the Heavy Flavor Averaging Group (HFAG) using the available results
as of at the end of 2005. In the averaging, the input parameters used in the
various analyses are adjusted (rescaled) to common values, and all known
correlations are taken into account. The averages include lifetimes, neutral
meson mixing parameters, parameters of semileptonic decays, branching fractions
of B meson decays to final states with open charm, charmonium and no charm, and
measurements related to CP asymmetries
A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK
The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel
The floating catalyst chemical vapour deposition (FC-CVD) method is unique in providing the capability for continuous carbon nanotube (CNT) synthesis at an industrial scale from a one-step continuous gas-phase process. Controlling the formation of the iron-based catalyst nanoparticles is widely recognized as a primary parameter in optimizing both CNT product properties and production rate. Herein the combined influences of pyrolytic carbon species and catalytic nanoparticles are both shown to influence CNT aerogel formation. This work studies the source of carbon in the formed CNTs, the location of aerogel formation, the in-situ behaviour of catalyst nanoparticles and the correlated morphology of the resultant CNTs. Axial measurements using isotopically-labelled methane (CH4) demonstrate that carbon within all CNTs is primarily derived from CH4 rather than some of the early-forming CNTs being predominantly supplied with carbon via thermal decomposition of catalytic precursor components. Quantification of CNT production along the axis of the reactor definitively dispels the notion that injection parameters influence CNT formation and instead shows that bulk CNT formation occurs near the reactor exit regardless of the carbon source (CH4, toluene or ethanol). Supply of carbon to different reactor locations indicates that CNT aerogel formation will occur even when carbon is delivered near the exit of the reactor so long as the carbon source reaches a sufficient temperature (>1000 °C) to induce pyrolysis. These results give an indication of how future large-scale CNT reactors may be optimized and controlled by modifying downstream catalyst and carbon delivery
Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates
The spectral function is determined from ALEPH and OPAL data
on hadronic tau decays using a neural network parametrization trained to retain
the full experimental information on errors, their correlations and chiral sum
rules: the DMO sum rule, the first and second Weinberg sum rules and the
electromagnetic mass splitting of the pion sum rule. Nonperturbative QCD vacuum
condensates can then be determined from finite energy sum rules. Our method
minimizes all sources of theoretical uncertainty and bias producing an estimate
of the condensates which is independent of the specific finite energy sum rule
used. The results for the central values of the condensates and are
both negative.Comment: 29 pages, 18 ps figure
Probing the CP nature of the Higgs coupling in tt¯h events at the LHC
The determination of the CP nature of the Higgs coupling to top quarks is addressed in this paper, using t¯th events produced in √s=13 TeV proton-proton collisions at the LHC. Dileptonic final states are employed, with two oppositely charged leptons and four jets, corresponding to the decays t→bW+→bℓ+νℓ, ¯t→¯bW−→¯bℓ−¯νℓ, and h→b¯b. Pure scalar (h=H), pure pseudoscalar (h=A), and CP-violating Higgs boson signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed through a kinematic fit. We furthermore generate samples that have both a CP-even and a CP-odd component in the t¯th coupling in order to probe the ratio of the two components. New angular distributions of the decay products, as well as CP angular asymmetries, are explored in order to separate the scalar from the pseudoscalar components of the Higgs boson and reduce the contribution from the dominant irreducible background, t¯tb¯b. Significant differences between the angular distributions and asymmetries are observed, even after the full kinematic fit reconstruction of the events, allowing to define the best observables for a global fit of the Higgs couplings parameters.info:eu-repo/semantics/publishedVersio
- …