14 research outputs found

    Influence of eye movement on lens dose and optic nerve target coverage during craniospinal irradiation

    Get PDF
    PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures’ shift from neutral position was greatest in caudal gaze; −5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98(OON)) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range −8.1 to 10.0 Gy], and mean D98(OON) decreased up to 3.3 Gy [total ΔD98(OON) range −13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98(OON) became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98(OON) significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose

    Novel VHH-Based Tracers with Variable Plasma Half-Lives for Imaging of CAIX-Expressing Hypoxic Tumor Cells

    Get PDF
    Hypoxic areas are present in the majority of solid tumors, and hypoxia is associated with resistance to therapies and poor outcomes. A transmembrane protein that is upregulated by tumor cells that have adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore, noninvasive imaging of CAIX could be of prognostic value, and it could steer treatment strategies. The aim of this study was to compare variants of CAIX-binding VHH B9, with and without a C-terminal albumin-binding domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and internalization of the various B9-variants were analyzed using SK-RC-52 cells. Biodistribution studies were performed in mice with subcutaneous SCCNij153 human head and neck cancer xenografts. Tracer uptake was determined by ex vivo radioactivity counting and visualized by SPECT/CT imaging. Furthermore, autoradiography images of tumor sections were spatially correlated with CAIX immunohistochemistry. B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood ratios were found in the SCCNij153 model at 4 h post injection for [111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ± 0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively) and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently inhibited tumor uptake of [111In]In-DTPA-B9, while only a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found. Immunohistochemistry and autoradiography images showed colocalization of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9 has a high affinity to CAIX and shows specific targeting to CAIX in head and neck cancer xenografts. The addition of ABD prolonged plasma half-life, increased tumor uptake, and enabled SPECT/CT imaging. This uptake was, however, partly CAIX- independent, precluding the ABD-tracers for use in hypoxia quantification in this tumor type

    Total Body Irradiation in Haematopoietic Stem Cell Transplantation for Paediatric Acute Lymphoblastic Leukaemia:Review of the Literature and Future Directions

    Get PDF
    Total body irradiation (TBI) has been a pivotal component of the conditioning regimen for allogeneic myeloablative haematopoietic stem cell transplantation (HSCT) in very-high-risk acute lymphoblastic leukaemia (ALL) for decades, especially in children and young adults. The myeloablative conditioning regimen has two aims: (1) to eradicate leukaemic cells, and (2) to prevent rejection of the graft through suppression of the recipient's immune system. Radiotherapy has the advantage of achieving an adequate dose effect in sanctuary sites and in areas with poor blood supply. However, radiotherapy is subject to radiobiological trade-offs between ALL cell destruction, immune and haematopoietic stem cell survival, and various adverse effects in normal tissue. To diminish toxicity, a shift from single-fraction to fractionated TBI has taken place. However, HSCT and TBI are still associated with multiple late sequelae, leaving room for improvement. This review discusses the past developments of TBI and considerations for dose, fractionation and dose-rate, as well as issues regarding TBI setup performance, limitations and possibilities for improvement. TBI is typically delivered using conventional irradiation techniques and centres have locally developed heterogeneous treatment methods and ways to achieve reduced doses in several organs. There are, however, limitations in options to shield organs at risk without compromising the anti-leukaemic and immunosuppressive effects of conventional TBI. Technological improvements in radiotherapy planning and delivery with highly conformal TBI or total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) have opened the way to investigate the potential reduction of radiotherapy-related toxicities without jeopardising efficacy. The demonstration of the superiority of TBI compared with chemotherapy-only conditioning regimens for event-free and overall survival in the randomised For Omitting Radiation Under Majority age (FORUM) trial in children with high-risk ALL makes exploration of the optimal use of TBI delivery mandatory. Standardisation and comprehensive reporting of conventional TBI techniques as well as cooperation between radiotherapy centres may help to increase the ratio between treatment outcomes and toxicity, and future studies must determine potential added benefit of innovative conformal techniques to ultimately improve quality of life for paediatric ALL patients receiving TBI-conditioned HSCT

    CAIX-targeting radiotracers for hypoxia imaging in head and neck cancer models

    No full text
    Hypoxia-induced carbonic anhydrase IX (CAIX) expression is a prognostic marker in solid tumors. In recent years many radiotracers have been developed, but a fair comparison of these compounds is not possible because of the diversity in tumor models and other experimental parameters. In this study we performed a direct in vivo comparison of three promising CAIX targeting radiotracers in xenografted head and neck cancer models. The biodistribution of [In-111]In-DOTA-ZCAIX:2 was directly compared with [In-111]In-DTPA-G250-F(ab')(2) and [In-111] In-DTPA-G250 in female BALB/C nu/nu mice bearing two HNSCC xenografts with different levels of CAIX expression. In vivo biodistribution was quantified by means of microSPECT/CT scans and ex vivo biodistribution was determined with the use of gamma-counter. Tumors were snap frozen and sections were stained for CAIX expression, vessels, hypoxia (pimonidazole) and tumor blood perfusion. Tracer uptake was significantly higher in SSCNij153 tumors compared to SCCNij185 tumors for [In-111]In-DOTA-HE3-ZCAIX:2: 0.32 +/- 0.03 versus 0.18 +/- 0.01%ID/g,(p = 0.003) 4 h p.i., for [In-111]In-DTPA-girentuximab-F(ab')(2): 3.0 +/- 0.5%ID/g and 1.2 +/- 0.1%ID/g (p = 0.03), 24 h p.i. and for [In-111]In-DTPA-girentuximab: 30 +/- 2.1%ID/g and 7.0 +/- 1.0%ID/g (p = 0.0002) 72 h p.i. SPECT imaging with both [In-111]In-DTPA-girentuximab-F(ab') 2 and [111In]In-DTPA-girentuximab showed a clear difference in tracer distribution between the two tumor models. The whole IgG, i.e. [In-111]In-DTPA-girentuximab, showed the highest tumor-to-muscle ratio. We showed that different CAIX-targeting radiotracers can discriminate a low CAIX-expressing tumor from a high CAIX-expressing head and neck cancer xenografts model. In these hypoxic head and neck xenograft models [In-111]In-DTPA-girentuximab showed the most promising results

    Progress against non-Hodgkin's lymphoma in children and young adolescents in the Netherlands since 1990: Stable incidence, improved survival and lower mortality

    No full text
    Background: With epidemiologic analyses of population-based trends in incidence and outcomes, we ascertained progress against non-Hodgkin's lymphoma (NHL) in children and young adolescents in the Netherlands since 1990. Methods: Tumour characteristics were extracted from the Netherlands Cancer Registry for patients aged <18 years at diagnosis, between 1990 and 2015. Mortality data for 1980–2016 were derived from Statistics Netherlands. NHL subtypes comprised lymphoblastic lymphoma (LBL), Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and anaplastic large cell lymphoma (ALCL). Time trends in incidence and mortality rates and 5-year overall survival (OS) rates were evaluated by average annual percentage change (AAPC) analyses and parametric survival models, respectively. Results: Overall incidence of NHL remained stable at 11 per million person-years (AAPC -0.2%, p = 0.68), with a marked decrease among children of 5–9 years (AAPC -2.6%, p < 0.01), especially among those with BL. Treatment regimens comprised less radiotherapy over time, especially for LBL and BL. Since 2004, most 15–17-year-old patients with NHL have been treated at a paediatric oncology centre. Five-year OS improved from 71% in 1990–94 to 87% in 2010–15 (p < 0.01), the most gain has been achieved in patients with DLBCL and ALCL from 60% and 73%, respectively, to both 90%. Population-based mortality from NHL decreased significantly towards 1.4 per million person-years (AAPC -4.2%, p < 0.01). Conclusions: This population-based epidemiological study exhibited significant progress against childhood and young adolescent NHL in the Netherlands since 1990, before the advent of a national paediatric oncologic centre in 2018: incidence decreased among children of 5–9 years, survival improved, and mortality steadily decreased over time

    F-18-FDG-PET/CT-based treatment planning for definitive (chemo) radiotherapy in patients with head and neck squamous cell carcinoma improves regional control and survival

    No full text
    Background and purpose: Multimodality imaging including 18F-FDG-PET has improved the detection threshold of nodal metastases in head and neck squamous cell carcinoma (HNSCC). The aim of this retrospective analysis is to investigate the impact of FDG-PET/CT-based nodal target volume definition (FDG-PET/CT-based NTV) on radiotherapy outcomes, compared to conventional CT-based nodal target volume definition (CT-based NTV). Materials and methods: Six-hundred-thirty-three patients treated for HNSCC with definitive (chemo)radiotherapy using IMRT/VMAT techniques between 2008 and 2017 were analyzed. FDG-PET/CT-based NTV was performed in 46% of the patients. The median follow-up was 31 months. Diagnostic imaging depicting the regional recurrence was co-registered with the initial CT-scan to reconstruct the exact site of the recurrence. Multivariate Cox regression analysis was performed to identify variables associated with radiotherapy outcome. Results: FDG-PET/CT-based NTV improved control of disease in the CTV elective-nodal (HR: 0.33, p = 0.026), overall regional control (HR: 0.62, p = 0.027) and overall survival (HR: 0.71, p = 0.033) compared to CT-based NTV. The risk for recurrence in the CTV elective-nodal was increased in case of synchronous local recurrence of the primary tumor (HR: 12.4, p < 0.001). Conclusion: FDG-PET/CT-based NTV significantly improved control of disease in the CTV elective-nodal, overall regional control and overall survival compared to CT-based NTV. A significant proportion of CTV elective-nodal recurrences are potentially new nodal manifestations from a synchronous local recurrent primary tumor. These results support the concept of target volume transformation and give an indication of the potential of FDG-PET to guide gradual radiotherapy dose de-escalation in elective neck treatment in HNSCC

    18F-FDG-PET/CT-based treatment planning for definitive (chemo)radiotherapy in patients with head and neck squamous cell carcinoma improves regional control and survival

    No full text
    Background and purpose: Multimodality imaging including 18F-FDG-PET has improved the detection threshold of nodal metastases in head and neck squamous cell carcinoma (HNSCC). The aim of this retrospective analysis is to investigate the impact of FDG-PET/CT-based nodal target volume definition (FDG-PET/CT-based NTV) on radiotherapy outcomes, compared to conventional CT-based nodal target volume definition (CT-based NTV). Materials and methods: Six-hundred-thirty-three patients treated for HNSCC with definitive (chemo)radiotherapy using IMRT/VMAT techniques between 2008 and 2017 were analyzed. FDG-PET/CT-based NTV was performed in 46% of the patients. The median follow-up was 31 months. Diagnostic imaging depicting the regional recurrence was co-registered with the initial CT-scan to reconstruct the exact site of the recurrence. Multivariate Cox regression analysis was performed to identify variables associated with radiotherapy outcome. Results: FDG-PET/CT-based NTV improved control of disease in the CTV elective-nodal (HR: 0.33, p = 0.026), overall regional control (HR: 0.62, p = 0.027) and overall survival (HR: 0.71, p = 0.033) compared to CT-based NTV. The risk for recurrence in the CTV elective-nodal was increased in case of synchronous local recurrence of the primary tumor (HR: 12.4, p < 0.001). Conclusion: FDG-PET/CT-based NTV significantly improved control of disease in the CTV elective-nodal, overall regional control and overall survival compared to CT-based NTV. A significant proportion of CTV elective-nodal recurrences are potentially new nodal manifestations from a synchronous local recurrent primary tumor. These results support the concept of target volume transformation and give an indication of the potential of FDG-PET to guide gradual radiotherapy dose de-escalation in elective neck treatment in HNSCC

    Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome

    No full text
    Purpose: Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. Methods: The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTVCT). PVs were visually determined on all PET scans (PVVIS). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PVRTL), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PVW&C), and a fuzzy locally adaptive Bayesian algorithm (PVFLAB). Results: Pretreatment PVVIS correlated best with PVFLAB and GTVCT. Correlations with PVRTL and PVW&C were weaker although statistically significant. During treatment, the PV VIS, PVW&C and PVFLAB significant decreased over time with the steepest decline over time for PVFLAB. Among these advanced segmentation methods, PVFLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PVW&C and 27 % for PVRTL). A decrease in PV FLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). Conclusion: In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV

    Novel VHH-Based Tracers with Variable Plasma Half-Lives for Imaging of CAIX-Expressing Hypoxic Tumor Cells

    No full text
    Hypoxic areas are present in the majority of solid tumors, and hypoxia is associated with resistance to therapies and poor outcomes. A transmembrane protein that is upregulated by tumor cells that have adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore, noninvasive imaging of CAIX could be of prognostic value, and it could steer treatment strategies. The aim of this study was to compare variants of CAIX-binding VHH B9, with and without a C-terminal albumin-binding domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and internalization of the various B9-variants were analyzed using SK-RC-52 cells. Biodistribution studies were performed in mice with subcutaneous SCCNij153 human head and neck cancer xenografts. Tracer uptake was determined by ex vivo radioactivity counting and visualized by SPECT/CT imaging. Furthermore, autoradiography images of tumor sections were spatially correlated with CAIX immunohistochemistry. B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood ratios were found in the SCCNij153 model at 4 h post injection for [111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ± 0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively) and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently inhibited tumor uptake of [111In]In-DTPA-B9, while only a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found. Immunohistochemistry and autoradiography images showed colocalization of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9 has a high affinity to CAIX and shows specific targeting to CAIX in head and neck cancer xenografts. The addition of ABD prolonged plasma half-life, increased tumor uptake, and enabled SPECT/CT imaging. This uptake was, however, partly CAIX- independent, precluding the ABD-tracers for use in hypoxia quantification in this tumor type

    Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer

    No full text
    Item does not contain fulltextAbstract Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms
    corecore