75 research outputs found

    Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions

    Get PDF
    We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I

    First in-beam γ -ray study of the level structure of neutron-rich S 39

    Get PDF
    International audienceThe neutron-rich S39 nucleus has been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of S36 ions with a thin Pb208 target. The magnetic spectrometer, PRISMA, and the γ-ray array, CLARA, were used in the measurements. Gamma-ray transitions of the following energies were observed: 339, 398, 466, 705, 1517, 1656, and 1724 keV. Five of the observed transitions have been tentatively assigned to the decay of excited states with spins up to (11/2−). The results of a state-of-the-art shell-model calculation of the level scheme of S39 using the SDPF-U effective interaction are also presented. The systematic behavior of the excitation energy of the first 11/2− states in the odd-A isotopes of sulfur and argon is discussed in relation to the excitation energy of the first excited 2+ states of the adjacent even-A isotopes. The states of S39 that have the components in their wave functions corresponding to three neutrons in the 1f7/2 orbital outside the N=20 core have also been discussed within the context of the 0 ℏω shell-model calculations presented here

    Intruder negative-parity states of neutron-rich Si33

    Get PDF
    Yrast states in the neutron-rich 1433Si19 nucleus have been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of S36 ions with a thin Pb208 target. An experimental setup that combines the large-acceptance magnetic spectrometer PRISMA and the high-efficiency γ-ray detection array CLARA was used in the experiment. Four new γ-ray photopeaks at energies of 971, 1724, 1772, and 2655 keV were observed and assigned to the Si33 level scheme. The experimental level scheme is compared with the results of 1ω p-sd-pf large-scale shell-model calculations using the recently developed PSDPFB effective interaction; good agreement is obtained. The structure of the populated states of Si33 is discussed within the context of an odd neutron coupled to states of the Si32 core. © 2010 The American Physical Society.This work was supported in part by the EPSRC (UK) and by the European Union under Contract No. RII3-CT-2004-506065. Five of us (D.O., M.B., A.H., K.K., and A.P.)acknowledge financial support from the EPSRC. Z.M.W acknowledges support from ORSAS and from the University of the West of Scotland. A.J. acknowledges financial supportfrom the Spanish Ministerio de Ciencia e Innovación under Contract Nos. FPA2007-66069 and FPA2009-13377-C02-02. Zs.D. acknowledges the financial support from OTKA Project No. K68801.Peer Reviewe

    Gamma-ray spectroscopy of 1738^{38}_{17}Cl using grazing reactions

    Full text link
    Excited states of 1738^{38}_{17}Cl21_{21} were populated in grazing reactions during the interaction of a beam of 1636^{36}_{16}S20_{20} ions of energy 215 MeV with a 82208^{208}_{82}Pb126_{126} target. The combination of the PRISMA magnetic spectrometer and the CLARA γ\gamma-ray detector array was used to identify the reaction fragments and to detect their decay via γ\gamma-ray emission. A level scheme for 38^{38}Cl is presented with tentative spin and parity assignments. The level scheme is discussed within the context of the systematics of neighboring nuclei and is compared with the results of state-of-the-art shell model calculations.Comment: 8 pages, 6 figures and 2 tables Changes: Table II and Figure 5 have been update

    Temperature Dependence of Backbone Dynamics in Human Ileal Bile Acid-Binding Protein: Implications for the Mechanism of Ligand Binding

    Get PDF
    Human ileal bile acid-binding protein (I-BABP), a member of the family of intracellular lipid binding proteins plays a key role in the cellular trafficking and metabolic regulation of bile salts. The protein has two internal and, according to a recent study, an additional superficial binding site and binds di- and trihydroxy bile salts with positive cooperativity and a high degree of site-selectivity. Previously, in the apo form, we have identified an extensive network of conformational fluctuations on the millisecond time scale, which cease upon ligation. Additionally, ligand binding at room temperature was found to be accompanied by a slight rigidification of picosecond-nanosecond (ps-ns) backbone flexibility. In the current study, temperature-dependent N-15 NMR spin relaxation measurements were used to gain more insight into the role of dynamics in human I-BABP-bile salt recognition. According to our analysis, residues sensing a conformational exchange in the apo state can be grouped into two clusters with slightly different exchange rates. The entropy-enthalpy compensation observed for both clusters suggests a disorder-order transition between a ground and a sparsely populated higher energy state in the absence of ligands. Analysis of the faster, ps-ns motion of N-15-H-1 bond vectors indicates an unusual nonlinear temperature-dependence for both ligation states. Intriguingly, while bile salt binding results in a more uniform response to temperature change throughout the protein, the temperature derivative of the generalized order parameter shows different responses to temperature increase for the two forms of the protein in the investigated temperature range. Analysis of both slow and fast motions in human I-BABP indicates largely different energy landscapes for the apo and halo states suggesting that optimization of binding interactions might be achieved by altering the dynamic behavior of specific segments in the protein
    corecore