5 research outputs found

    A conceptual framework and practical guide for assessing fitness-to-operate in the offshore oil and gas industry

    Get PDF
    The paper outlines a systemic approach to understanding and assessing safety capability in the offshore oil and gas industry. We present a conceptual framework and assessment guide for understanding fitness-to-operate (FTO) that builds a more comprehensive picture of safety capability for regulators and operators of offshore facilities. The FTO framework defines three enabling capitals that create safety capability: organizational capital, social capital, and human capital. For each type of capital we identify more specific dimensions based on current theories of safety, management, and organizational processes. The assessment guide matches specific characteristics to each element of the framework to support assessment of safety capability. The content and scope of the FTO framework enable a more comprehensive coverage of factors that influence short-term and long-term safety outcomes

    Expert elicitation of directional metocean parameters

    Get PDF
    Probability distributions that describe metocean conditions are essential for design and operational decision making in offshore engineering. When data are insufficient to estimate these distributions an alternative is expert elicitation – a collection of techniques that translate personal qualitative knowledge into subjective probability distributions. We discuss elicitation of surface currents on the Exmouth Plateau, North-Western Australia, a region of intense oil and gas drilling and exploration. Metocean and offshore engineering experts agree that surface currents on the plateau exhibit large spatio-temporal variation, and that recorded observations do not fully capture this variability. Combining such experts' knowledge, we elicit the joint distribution of magnitude and direction by first focusing on the marginal distribution of direction, followed by the conditional distribution of magnitude given direction. Although we focus on surface currents, the direction/magnitude components are common to many metocean processes. The directional component complicates the problem by introducing circular probability distributions. The subjectivity of elicitation demands caution and transparency, and this is addressed by embedding our method into the established elicitation protocol, the Sheffield Elicitation Framework. The result is a general framework for eliciting metocean conditions when data are insufficient to estimate probabilistic summaries
    corecore