67 research outputs found

    The effects of an enhanced simulation programme on medical students' confidence responding to clinical deterioration

    Get PDF
    BACKGROUND: Clinical deterioration in adult hospital patients is an identified issue in healthcare practice globally. Teaching medical students to recognise and respond to the deteriorating patient is crucial if we are to address the issue in an effective way. The aim of this study was to evaluate the effects of an enhanced simulation exercise known as RADAR (Recognising Acute Deterioration: Active Response), on medical students’ confidence. METHODS: A questionnaire survey was conducted; the instrument contained three sections. Section 1 focused on students’ perceptions of the learning experience; section 2 investigated confidence. Both sections employed Likert-type scales. A third section invited open responses. Questionnaires were distributed to a cohort of third-year medical students (n = 158) in the North East of Scotland 130 (82 %) were returned for analysis, employing IBM SPSS v18 and ANOVA techniques. RESULTS: Students’ responses pointed to many benefits of the sessions. In the first section, students responded positively to the educational underpinning of the sessions, with all scores above 4.00 on a 5-point scale. There were clear learning outcomes; the sessions were active and engaging for students with an appropriate level of challenge and stress; they helped to integrate theory and practice; and effective feedback on their performance allowed students to reflect and learn from the experience. In section 2, the key finding was that scores for students’ confidence to recognise deterioration increased significantly (p. < .001) as a result of the sessions. Effect sizes (Eta(2)) were high, (0.68–0.75). In the open-ended questions, students pointed to many benefits of the RADAR course, including the opportunity to employ learned procedures in realistic scenarios. CONCLUSIONS: The use of this enhanced form of simulation with simulated patients and the judicious use of moulage is an effective method of increasing realism for medical students. Importantly, it gives them greater confidence in recognising and responding to clinical deterioration in adult patients. We recommend the use of RADAR as a safe and cost-effective approach in the area of clinical deterioration and suggest that there is a need to investigate its use with different patient groups

    The impact of ageing reveals distinct roles for human dentate gyrus and CA3 in pattern separation and object recognition memory

    Get PDF
    © 2017 The Author(s). Both recognition of familiar objects and pattern separation, a process that orthogonalises overlapping events, are critical for effective memory. Evidence is emerging that human pattern separation requires dentate gyrus. Dentate gyrus is intimately connected to CA3 where, in animals, an autoassociative network enables recall of complete memories to underpin object/event recognition. Despite huge motivation to treat age-related human memory disorders, interaction between human CA3 and dentate subfields is difficult to investigate due to small size and proximity. We tested the hypothesis that human dentate gyrus is critical for pattern separation, whereas, CA3 underpins identical object recognition. Using 3 T MR hippocampal subfield volumetry combined with a behavioural pattern separation task, we demonstrate that dentate gyrus volume predicts accuracy and response time during behavioural pattern separation whereas CA3 predicts performance in object recognition memory. Critically, human dentate gyrus volume decreases with age whereas CA3 volume is age-independent. Further, decreased dentate gyrus volume, and no other subfield volume, mediates adverse effects of aging on memory. Thus, we demonstrate distinct roles for CA3 and dentate gyrus in human memory and uncover the variegated effects of human ageing across hippocampal regions. Accurate pinpointing of focal memory-related deficits will allow future targeted treatment for memory loss

    PKC Theta Ablation Improves Healing in a Mouse Model of Muscular Dystrophy

    Get PDF
    Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ) is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ−/−, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ−/− mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells

    Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    Get PDF
    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models

    On the Ethics of Trade Credit: Understanding Good Payment Practice in the Supply Chain

    Get PDF
    In spite of its commercial importance and signs of clear concern in public policy arenas, trade credit has not been subjected to systematic, extended analysis in the business ethics literature, even where suppliers as a stakeholder group have been considered. This paper makes the case for serious consideration of the ethics of trade credit and explores the issues surrounding slow payment of debts. It discusses trade debt as a kind of promise, but— noting that not all promises are good ones—goes on to develop an analysis of the ethics of trade credit grounded in an understanding of its fundamental purpose. Making a distinction between ‘‘operating’’ trade credit and ‘‘financial’’ trade credit, the paper provides an account of the maximum period for which it is appropriate for one company to delay payment to another from which it has purchased goods or services. The concern of commentators and policy makers that companies should not take too long to pay their debts is affirmed, but the understanding of what timely payment means is significantly finessed, with one conclusion being that, if debts have not already been settled according to acceptable standard terms of trade, cash should pass quickly back along the supply chain once the customer in the final product market has paid. The analysis has implications not only for companies that take credit but also for external parties that seek to rate companies or set regulations according to speed of payment—an approach that is shown to be misleadingly simplistic, albeit well intentioned. A corresponding important responsibility for suppliers, not to extend excessive credit (and thus act as a quasi-bank), also follows from the analysis developed. Having provided a novel analysis of an important business problem, the paper then discusses some of the related practical issues and makes suggestions for further research

    Empowerment and Parent Gain as Mediators and Moderators of Distress in Mothers of Children with Autism Spectrum Disorders

    Get PDF
    Mothers of children with Autism Spectrum Disorders (ASD) experience considerable amounts of distress and experiences of crisis. The Family Adjustment and Adaptation Response model provides a theory for understanding the experience of distress and family crisis in families, and the purpose of the present study was to examine experiences of distress in mothers of individuals with ASD using this framework. We specifically investigated how parent empowerment and positive gain are related to their experiences of distress, whether as mediators or as moderators of child aggression. Participants included 156 mothers of children with ASD ranging in age from 4 – 21 years. Mothers completed an online survey of demographics, problem behaviors, family empowerment, positive gain, and distress. We conducted path analyses of multiple mediation and moderation. Results indicated that greater child problem behavior was related to less parent empowerment, which was related to greater maternal distress, supporting empowerment as a partial mediator. At the same time, greater child aggression was not related to maternal distress in mothers who report high rates of positive gain, suggesting that parent gain functions as a moderator. The implications for how and when clinicians intervene with families of children with ASD are discussed

    Understanding the consumption of folic acid during preconception, among Pakistani, Bangladeshi and white British mothers in Luton, UK: a qualitative study

    Get PDF
    Background To review the similarities and differences in Pakistani, Bangladeshi and White British mothers health beliefs (attitudes, knowledge and perceptions) and health behaviour regarding their consumption of folic acid pre-conception, to reduce the risk of neural tube defects. Methods Our study used a descriptive qualitative research approach, implementing face-to-face focus group discussions with Pakistani, Bangladeshi or White British mothers (normal birth outcomes and mothers with poor birth outcomes) and semi-structured interviews or focus groups with service providers using semi-structured topic guides. This method is well suited for under researched areas where in-depth information is sought. There were three sample groups: 1. Pakistani, Bangladeshi and White British mothers with normal birth outcomes (delivery after 37 weeks of gestation, in the preceding 6 to 24 months, weighing 2500 g and living within a specified postcode area in Luton, UK). 2. Pakistani Bangladeshi and white British bereaved mothers who had suffered a perinatal mortality (preceding 6 to 24 months, residing within a specificied postcode area). 3. Healthcare professionals working on the local maternity care pathway (i.e. services providing preconception, antenatal, antepartum and postpartum care). Transcribed discussions were analysed using the Framework Analysis approach. Results The majority of mothers in this sample did not understand the benefits or optimal time to take folic acid pre-conception. Conversely, healthcare professionals believed the majority of women did consume folic acid, prior to conception. Conclusions There is a need to increase public health awareness of the optimal time and subsequent benefits for taking folic acid, to prevent neural tube defects.</p

    Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse

    Get PDF
    BACKGROUND: The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. METHODS: A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. RESULTS: We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. CONCLUSIONS: We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a well standardized experimental model for research on cancer cachexia. We wish to point out that scientists using the C26 model to study cancer and those using the same model to study cachexia may be unaware of each other's works because they use different keywords; we present strategies to eliminate this gap and discuss the benefits of such an exchange of knowledge
    • …
    corecore