128 research outputs found

    Relation of Structure to the Microhardness of Human Dentin

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66589/2/10.1177_00220345590380032701.pd

    Successful long-term weight loss among participants with diabetes receiving an intervention promoting an adapted Mediterranean-style dietary pattern: The Heart Healthy Lenoir Project

    Get PDF
    Objective: To examine weight change by diabetes status among participants receiving a Mediterraneanstyle diet, physical activity, and weight loss intervention adapted for delivery in the southeastern USA, where rates of cardiovascular disease (CVD) are disproportionately high. Research design and methods: The intervention included: Phase I (months 1-6), an individually tailored intervention promoting a Mediterranean-style dietary pattern and increased walking; Phase II (months 7-12), option of a 16-week weight loss intervention for those with BMI≥25 kg/m2 offered as 16 weekly group sessions or 5 group sessions and 10 phone calls, or a lifestyle maintenance intervention; and Phase III (months 13-24), weight loss maintenance intervention for those losing ≥8 pounds with all others receiving a lifestyle maintenance intervention. Weight change was assessed at 6, 12, and 24-month follow-up. Results: Baseline characteristics (n=339): mean age 56, 77% female, 65% African-American, 124 (37%) with diabetes; mean weight 103 kg for those with diabetes and 95 kg for those without. Among participants with diabetes, average weight change was -1.2 kg (95% CI -2.1 to -0.4) at 6 months (n=92), -1.5 kg (95% CI -2.9 to -0.2) at 12 months (n=96), and -3.7 kg (95% CI -5.2 to -2.1) at 24 months (n=93). Among those without diabetes, weight change was -0.4 kg (95% CI -1.4 to 0.6) at 24 months (n=154). Conclusions: Participants with diabetes experienced sustained weight loss at 24-month follow-up. High-risk US populations with diabetes may experience clinically important weight loss from this type of lifestyle intervention

    Kiloparsec-scale Imaging of the CO(1-0)-traced cold molecular gas reservoir in a z similar to 3.4 submillimeter galaxy

    Get PDF
    We present a high-resolution study of the cold molecular gas as traced by CO(1-0) in the unlensed z similar to 3.4 submillimeter galaxy SMM J13120+4242, using multiconfiguration observations with the Karl G. Jansky Very Large Array (JVLA). The gas reservoir, imaged on 0 ''.39 (similar to 3 kpc) scales, is resolved into two components separated by similar to 11 kpc with a total extent of 16 +/- 3 kpc. Despite the large spatial extent of the reservoir, the observations show a CO(1-0) FWHM linewidth of only 267 +/- 64 km s(-1). We derive a revised line luminosity of LCO(1-0)' = (10 +/- 3) x 10(10) K km s(-1) pc(2) and a molecular gas mass of M-gas = (13 +/- 3)x 10(10) (alpha(CO)/1) M-circle dot. Despite the presence of a velocity gradient (consistent with previous resolved CO(6-5) imaging), the CO(1-0) imaging shows evidence for significant turbulent motions that are preventing the gas from fully settling into a disk. The system likely represents a merger in an advanced stage. Although the dynamical mass is highly uncertain, we use it to place an upper limit on the CO-to-H-2 mass conversion factor a alpha(CO) of 1.4. We revisit the SED fitting, finding that this galaxy lies on the very massive end of the main sequence at z = 3.4. Based on the low gas fraction, short gas depletion time, and evidence for a central AGN, we propose that SMM J13120 is in a rapid transitional phase between a merger-driven starburst and an unobscured quasar. The case of SMM J13120 highlights how mergers may drive important physical changes in galaxies without pushing them off the main sequence.Galaxie

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    The IMF in Starbursts

    Full text link
    The history of the IMF in starburst regions is reviewed. The IMFs are no longer believed to be top-heavy, although some superstar clusters, whether in starburst regions or not, could be. General observations of the IMF are discussed to put the starburst results in perspective. Observed IMF variations seem to suggest that the IMF varies a little with environment in the sense that denser and more massive clusters produce more massive stars, and perhaps more brown dwarfs too, compared to intermediate mass stars.Comment: 8 pages, to be published in ``Starbursts: from 30 Doradus to Lyman Break Galaxies,'' held at Institute of Astronomy, Cambridge University, UK, September 6-10, 2004. Kluwer Academic Publishers, edited by Richard de Grijs and Rosa M. Gonzalez Delgad

    Disrupted structure and aberrant function of CHIP mediates the loss of motor and cognitive function in preclinical models of SCAR16

    Get PDF
    CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease
    • …
    corecore