38 research outputs found

    Quantum curves for Hitchin fibrations and the Eynard-Orantin theory

    Get PDF
    We generalize the topological recursion of Eynard-Orantin (2007) to the family of spectral curves of Hitchin fibrations. A spectral curve in the topological recursion, which is defined to be a complex plane curve, is replaced with a generic curve in the cotangent bundle TCT^*C of an arbitrary smooth base curve CC. We then prove that these spectral curves are quantizable, using the new formalism. More precisely, we construct the canonical generators of the formal \hbar-deformation family of DD-modules over an arbitrary projective algebraic curve CC of genus greater than 11, from the geometry of a prescribed family of smooth Hitchin spectral curves associated with the SL(2,C)SL(2,\mathbb{C})-character variety of the fundamental group π1(C)\pi_1(C). We show that the semi-classical limit through the WKB approximation of these \hbar-deformed DD-modules recovers the initial family of Hitchin spectral curves.Comment: 34 page

    Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    Get PDF
    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 A degrees C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 A degrees C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of gamma aEuro(3) phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 A degrees C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the delta-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases

    2nd TMS Symposium on biological materials science

    No full text
    10.1016/j.actbio.2007.01.001Acta Biomaterialia33 SPEC. ISS.287-28

    Sensitivity of total strain energy of a vehicle structure to local joint stiffness

    No full text

    Phenomenological theory of structural relaxation based on a thermorheologically complex relaxation time distribution

    No full text
    he aim of this work is to explore the consequences on the kinetics of structural relaxation of considering a glass-forming system to consist of a series of small but macroscopic relaxing regions that evolve independently from each other towards equilibrium in the glassy state. The result of this assumption is a thermorheologically complex model. In this approach each relaxing zone has been assumed to follow the Scherer-Hodge model for structural relaxation (with the small modification of taking a linear dependence of configurational heat capacity with temperature). The model thus developed contains four fitting parameters. A least-squares search routine has been used to find the set of model parameters that fit simultaneously four DSC thermograms in PVAc after different thermal histories. The computersimulated curves are compared with those obtained with Scherer-Hodge model and the model proposed by Gómez and Monleón. The evolution of the relaxation times during cooling or heating scans and also during isothermal annealing below the glass transition has been analysed. It has been shown that the relaxation times distribution narrows in the glassy state with respect to equilibrium. Isothermal annealing causes this distribution to broaden during the process to finally attain in equilibrium the shape defined at temperatures above T<sub>g</sub>

    Genomic organization and regulation of murine alpha haemoglobin stabilizing protein by erythroid Kruppel-like factor

    No full text
    Alpha haemoglobin stabilising protein (AHSP) binds free alpha-globin chains and plays an important role in the protection of red cells, particularly during beta-thalassaemia. Murine ASHP was discovered as a GATA-1 target gene and human AHSP is directly regulated by GATA-1. More recently, AHSP was rediscovered as a highly erythroid Kruppel-like factor (EKLF) -dependent transcript. We have determined the organisation of the murine AHSP gene and compared it to orthologs. There are two CACC box elements in the proximal promoter. The proximal element is absolutely conserved, but does not bind EKLF as it is not a canonical binding site. In rodents, the distal element contains a 3 bp insertion that disrupts the typical EKLF binding consensus region. Nevertheless, EKLF binds this atypical site by gel mobility shift assay, specifically occupies the AHSP promoter in vivo in a chromatin immunoprecipitation assay, and transactivates AHSP through this CACC site in promoter-reporter assays. Our results suggest EKLF can occupy CACC elements in vivo that are not predictable from the consensus binding site inferred from structural studies. We also propose that absence of AHSP in EKLF-null red cells exacerbates the toxicity of free alpha-globin chains, which exist because of the defect in beta-globin gene activation
    corecore