456 research outputs found
Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water−cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields
Engaged Learning: Enabling Self-Authorship and Effective Practice
There is now broad consensus that higher education must extend beyond content-based knowledge to encompass intellectual and practical skills, personal and social responsibility, and integrative learning. The college learning outcomes needed for success in 21st century life include critical thinking, a coherent sense of self, intercultural maturity, civic engagement, and the capacity for mutual relationships. Yet, research suggests that college students are struggling to achieve these outcomes in part because skills needed to succeed in college are not those needed to succeed upon graduation. One reason for this gap is that these college learning outcomes require complex developmental capacities or “self-authorship” that higher education is not currently designed to promote
Integration of Pretreatment With Simultaneous Counter-Current Extraction of Energy Sorghum for High-Titer Mixed Sugar Production
Sorghum (Sorghum bicolor L. Moench) offers substantial potential as a feedstock for the production of sugar-derived biofuels and biochemical products from cell wall polysaccharides (i. e., cellulose and hemicelluloses) and water-extractable sugars (i.e., glucose, fructose, sucrose, and starch). A number of preprocessing schemes can be envisioned that involve processes such as sugar extraction, pretreatment, and densification that could be employed in decentralized, regional-scale biomass processing depots. In this work, an energy sorghum exhibiting a combination of high biomass productivity and high sugar accumulation was evaluated for its potential for integration into several potential biomass preprocessing schemes. This included counter-current extraction of water-soluble sugars followed by mild NaOH or liquid hot water pretreatment of the extracted bagasse. A novel processing scheme was investigated that could integrate with current diffuser-type extraction systems for sugar extraction. In this approach, mild NaOH pretreatment (i.e., \u3c90°C) was performed as a counter-current extraction to yield both an extracted, pretreated bagasse and a high-concentration mixed sugar stream. Following hydrolysis of the bagasse, the combined hydrolysates derived from cellulosic sugars and extractable sugars were demonstrated to be fermentable to high ethanol titers (\u3e8%) at high metabolic yields without detoxification using a Saccharomyces cerevisiae strain metabolically engineered and evolved to ferment xylose
New Zealand athletes' attitudes towards seeking sport psychology consultation
The aim of this study was to use the Sport Psychology Attitudes-Revised (SPA-R) questionnaire (Martin, Kellman, Lavallee & Page, 2002) to develop an understanding of the attitudes elite New Zealand athletes (N = 112) hold towards sport psychology so that services can be tailored to accommodate these views. The influence of athlete characteristics such as nationality, gender, age, level of competition achieved, and previous use of sport psychology on attitudes was explored. Further, the SPA-R was used as a measure of attitudes within the Theory of Reasoned Action (TRA; Ajzen & Fishbein, 1980) and Theory Planned Behaviour (TPB; Ajzen, 1985, 1991), and integrated with measures of subjective norm and perceived behavioural control to investigate the influence of these variables on predicting athletes' intention to use sport psychology. Results suggested that New Zealand athletes generally held positive attitudes regarding sport psychology, with gender and previous experience of sport psychology significantly influencing attitudes. Regression analyses indicated that the TPB was a better model than the TRA for predicting intention, and the variables predicted 39.7% of variance in intention to use sport psychology. The only SPA-R subscale that contributed significantly was confidence in sport psychology, and perceived behavioural control and subjective norm also contributed significantly. These findings suggest the SPA-R may have limited value in predicting intentions, although the TPB could provide a useful theoretical framework to direct interventions aimed at increasing athletes' intention to use sport psychology
Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings
BACKGROUND: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. RESULTS: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H(2)O(2) loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H(2)O(2) loadings can be used that may result in up to a 50-65% decrease in H(2)O(2) application (from 100 mg H(2)O(2)/g biomass to 35–50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. CONCLUSIONS: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H(2)O(2), catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach
Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose
<p>Abstract</p> <p>Background</p> <p>Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production.</p> <p>Results</p> <p>The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H<sub>2</sub>O<sub>2 </sub>loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H<sub>2</sub>O<sub>2 </sub>concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H<sub>2</sub>O<sub>2 </sub>loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave monomeric Glc yields of 83% or 95%, respectively. Yields of Glc and Xyl after pretreatment at a low hydrogen peroxide loading (0.125 g H<sub>2</sub>O<sub>2</sub>/g biomass) could be improved by extending the pretreatment residence time to 48 h and readjusting the pH to 11.5 every 6 h during the pretreatment. A Glc yield of 77% was obtained using a pretreatment of 15% biomass loading, 0.125 g H<sub>2</sub>O<sub>2</sub>/g biomass, and 48 h with pH adjustment, followed by digestion with an optimized commercial enzyme mixture at an enzyme loading of 15 mg protein/g glucan.</p> <p>Conclusions</p> <p>Alkaline peroxide is an effective pretreatment for corn stover. Particular advantages are the use of reagents with low environmental impact and avoidance of special reaction chambers. Reasonable yields of monomeric Glc can be obtained at an H<sub>2</sub>O<sub>2 </sub>concentration one-quarter of that used in previous AHP research. Additional improvements in the AHP process, such as peroxide stabilization, peroxide recycling, and improved pH control, could lead to further improvements in AHP pretreatment.</p
An assessment of the autism neuroimaging literature for the prospects of re-executability
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature.
Methods: We sought to perform a ‘re-executability survey’ to evaluate the recent neuroimaging literature with an eye toward seeing if the technical aspects of our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018.
Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available.
Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future
Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass
Background Heterogeneity within herbaceous biomass can present important challenges for processing feedstocks to cellulosic biofuels. Alterations to cell wall composition and organization during plant growth represent major contributions to heterogeneity within a single species or cultivar. To address this challenge, the focus of this study was to characterize the relationship between composition and properties of the plant cell wall and cell wall response to deconstruction by NaOH pretreatment and enzymatic hydrolysis for anatomical fractions (stem internodes, leaf sheaths, and leaf blades) within switchgrass at various tissue maturities as assessed by differing internode. Results Substantial differences in both cell wall composition and response to deconstruction were observed as a function of anatomical fraction and tissue maturity. Notably, lignin content increased with tissue maturity concurrently with decreasing ferulate content across all three anatomical fractions. Stem internodes exhibited the highest lignin content as well as the lowest hydrolysis yields, which were inversely correlated to lignin content. Confocal microscopy was used to demonstrate that removal of cell wall aromatics (i.e., lignins and hydroxycinnamates) by NaOH pretreatment was non-uniform across diverse cell types. Non-cellulosic polysaccharides were linked to differences in cell wall response to deconstruction in lower lignin fractions. Specifically, leaf sheath and leaf blade were found to have higher contents of substituted glucuronoarabinoxylans and pectic polysaccharides. Glycome profiling demonstrated that xylan and pectic polysaccharide extractability varied with stem internode maturity, with more mature internodes requiring harsher chemical extractions to remove comparable glycan abundances relative to less mature internodes. While enzymatic hydrolysis was performed on extractives-free biomass, extractible sugars (i.e., starch and sucrose) comprised a significant portion of total dry weight particularly in stem internodes, and may provide an opportunity for recovery during processing
- …