333 research outputs found

    A comparison of the development of audiovisual integration in children with autism spectrum disorders and typically developing children

    Get PDF
    This study aimed to investigate the development of audiovisual integration in children with Autism Spectrum Disorder (ASD). Audiovisual integration was measured using the McGurk effect in children with ASD aged 7–16 years and typically developing children (control group) matched approximately for age, sex, nonverbal ability and verbal ability. Results showed that the children with ASD were delayed in visual accuracy and audiovisual integration compared to the control group. However, in the audiovisual integration measure, children with ASD appeared to ‘catch-up’ with their typically developing peers at the older age ranges. The suggestion that children with ASD show a deficit in audiovisual integration which diminishes with age has clinical implications for those assessing and treating these children

    P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors.

    Get PDF
    Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Nav1.9 in mediating murine responses. The application of UTP (P2Y2 and P2Y4 agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y1, P2Y12, and P2Y13 agonist) also increased action potential firing, an effect blocked by the selective P2Y1 receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y1 and P2Y2 transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Nav1.9 transcripts colocalized in 86% of P2Y1-positive and 100% of P2Y2-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Na(v)1.9(-/-) mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease.This work was supported by The Medical Research Council (D.C.B.), a Wellcome Trust University Award (L.A.B.), Neusentis (D.C.B.), The Royal College of Surgeons of England (G.B.), The Biotechnology and Biological Sciences Research Council (J.R.F.H.), Bowel & Cancer Research (M.A.T.), Pain Relief Foundation and Crohn's in Childhood Research Association (V.C.-G.), and The Dr Hadwen Trust for Humane Research (C.M.)

    Futureproofing [18F]Fludeoxyglucose manufacture at an Academic Medical Center

    Full text link
    Abstract Background We recently upgraded our [18F]fludeoxyglucose (FDG) production capabilities with the goal of futureproofing our FDG clinical supply, expanding the number of batches of FDG we can manufacture each day, and improving patient throughput in our nuclear medicine clinic. In this paper we report upgrade of the synthesis modules to the GE FASTLab 2 platform (Phase 1) and cyclotron updates (Phase 2) from both practical and regulatory perspectives. We summarize our experience manufacturing FDG on the FASTLab 2 module with a high-yielding self-shielded niobium (Nb) fluorine-18 target. Results Following installation of Nb targets for production of fluorine-18, a 55 μA beam for 22 min generated 1330 ± 153 mCi of [18F]fluoride. Using these cyclotron beam parameters in combination with the FASTLab 2, activity yields (AY) of FDG were 957 ± 102 mCi at EOS, corresponding to 72% non-corrected AY (n = 235). Our workflow, inventory management and regulatory compliance have been greatly simplified following the synthesis module and cyclotron upgrades, and patient wait times for FDG PET have been cut in half at our nuclear medicine clinic. Conclusions The combination of FASTlab 2 and self-shielded Nb fluorine-18 targets have improved our yield of FDG, and enabled reliable and repeatable manufacture of the radiotracer for clinical use.https://deepblue.lib.umich.edu/bitstream/2027.42/145727/1/41181_2018_Article_48.pd

    Bereavement and palliative care: A public health perspective

    Get PDF
    In recent years there has been an increasing emphasis upon public health perspectives that place palliative care in the context of end-of-life services across whole populations. There is little corresponding public health interest in bereavement. Yet if we have to develop relevant, coherent, and comprehensive end-of-life care policies and practices, public health approaches to palliative care need to be accompanied by public health approaches to bereavement care. We argue here that palliative care services should match their commitment to providing a good death with a commitment to supporting good grief, and that this means investing their efforts principally in developing community capacity for bereavement care rather than seeking to deliver specialized bereavement services to relatives and friends of those who have received palliative care services

    Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli.

    Get PDF
    Chronic visceral pain affects millions of individuals worldwide and remains poorly understood, with current therapeutic options constrained by gastrointestinal adverse effects. Visceral pain is strongly associated with inflammation and distension of the gut. Here we report that the voltage-gated sodium channel subtype NaV1.9 is expressed in half of gut-projecting rodent dorsal root ganglia sensory neurons. We show that NaV1.9 is required for normal mechanosensation, for direct excitation and for sensitization of mouse colonic afferents by mediators from inflammatory bowel disease tissues, and by noxious inflammatory mediators individually. Excitatory responses to ATP or PGE2 were substantially reduced in NaV1.9(-/-) mice. Deletion of NaV1.9 substantially attenuates excitation and subsequent mechanical hypersensitivity after application of inflammatory soup (IS) (bradykinin, ATP, histamine, PGE2, and 5HT) to visceral nociceptors located in the serosa and mesentery. Responses to mechanical stimulation of mesenteric afferents were also reduced by loss of NaV1.9, and there was a rightward shift in stimulus-response function to ramp colonic distension. By contrast, responses to rapid, high-intensity phasic distension of the colon are initially unaffected; however, run-down of responses to repeat phasic distension were exacerbated in NaV1.9(-/-) afferents. Finally colonic afferent activation by supernatants derived from inflamed human tissue was greatly reduced in NaV1.9(-/-) mice. These results demonstrate that NaV1.9 is required for persistence of responses to intense mechanical stimulation, contributes to inflammatory mechanical hypersensitivity, and is essential for activation by noxious inflammatory mediators, including those from diseased human bowel. These observations indicate that NaV1.9 represents a high-value target for development of visceral analgesics

    Mechanisms of Interference in Vibrotactile Working Memory

    Get PDF
    In previous studies of interference in vibrotactile working memory, subjects were presented with an interfering distractor stimulus during the delay period between the target and probe stimuli in a delayed match-to-sample task. The accuracy of same/different decisions indicated feature overwriting was the mechanism of interference. However, the distractor was presented late in the delay period, and the distractor may have interfered with the decision-making process, rather than the maintenance of stored information. The present study varies the timing of distractor onset, (either early, in the middle, or late in the delay period), and demonstrates both overwriting and non-overwriting forms of interference

    Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production

    Full text link
    Abstract Background PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday. Results ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR. Conclusions ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.https://deepblue.lib.umich.edu/bitstream/2027.42/152186/1/41181_2019_Article_77.pd

    Somatic mutations of KIT in familial testicular germ cell tumours

    Get PDF
    Somatic mutations of the KIT gene have been reported in mast cell diseases and gastrointestinal stromal tumours. Recently, they have also been found in mediastinal and testicular germ cell tumours (TGCTs), particularly in cases with bilateral disease. We screened the KIT coding sequence (except exon 1) for germline mutations in 240 pedigrees with two or more cases of TGCT. No germline mutations were found. Exons 10, 11 and 17 of KIT were examined for somatic mutations in 123 TGCT from 93 multiple-case testicular cancer families. Five somatic mutations were identified; four were missense amino acid substitutions in exon 17 and one was a 12bp in-frame deletion in exon 11. Two of seven TGCT from cases with bilateral disease carried KIT mutations compared with 3 out 116 unilateral cases (p = 0.026). The results indicate that somatic KIT mutations are implicated in the development of a minority of familial as well as sporadic TGCT. They also lend support to the hypothesis that KIT mutations primarily take place during embryogenesis such that primordial germ cells with KIT mutations are distributed to both testes
    • …
    corecore