36 research outputs found

    A Method for Combining Experimentation and Molecular Dynamics Simulation to Improve Cohesive Zone Models for Metallic Microstructures

    Get PDF
    Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales

    Development of Optimal Multiscale Patterns for Digital Image Correlation via Local Grayscale Variation

    Get PDF
    In some applications of digital image correlation (DIC), adequately quantifying deformation of a material can require identification of local deformations which are much smaller than the total field of interest. Instead of exhaustively stitching together images taken at high magnification, it is more efficient to utilize multiple magnifications. Unfortunately, it is rare that the material naturally has features that are useful for image correlation at multiple magnifications. Therefore, an ideal pattern was sought that (1) contains features appropriate for the multiple magnifications, (2) need not know location of high magnification a priori, and (3) can be viewed with standard DIC equipment. An optimization framework was developed based on the inclusion of local grayscale biases which can produce multiscale DIC patterns that satisfy these criteria. Numerical and physical experiments were also performed to illustrate the functionality and utility of the designed patterns

    Selectively Electron-Transparent Microstamping Toward Concurrent Digital Image Correlation and High-Angular Resolution Electron Backscatter Diffraction (EBSD) Analysis

    Get PDF
    High resolution digital image correlation (HRDIC) and high resolution electron backscatter diffraction (HREBSD) provide valuable and complementary data concerning local deformation at the microscale. However, standard surface preparation techniques are mutually exclusive, which makes combining these techniques in situ impossible. This paper introduces a new method of applying surface patterning for HRDIC, namely a urethane rubber microstamp, that provides a pattern with enough contrast for HRDIC at low accelerating voltages, but is still virtually transparent at the higher voltages necessary for HREBSD and conventional electron backscatter diffraction (EBSD) analysis. Furthermore, microstamping is inexpensive and repeatable, and is more amenable to application of patterns to complex surface geometries and larger surface areas than other patterning techniques

    Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    Get PDF
    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale framework. At the microscale, the nanoscale mechanics are represented within cohesive zones where appropriate, i.e. where the mechanics observed at the nanoscale can be represented as occurring on a plane such as at grain boundaries or slip planes at a crack front. Important advancements that are yet to be made include: 1. an increased fidelity in cohesive zone modeling; 2. a means to understand how atomistic simulation scales with time; 3. a new experimental methodology for generating empirical models for CZMs and emerging materials; and 4. a validation of simulations of the damage processes at the nano-micro scale. With ever-increasing computer power, the long-term ability to employ atomistic simulation for the prognosis of structural components will not be limited by computation power, but by our lack of knowledge in incorporating atomistic models into simulations of MSFC into a multiscale framework

    Investigation of Fatigue Crack Initiation and Growth in Cast MAR-M247 Subjected to Low Cycle Fatigue at Room Temperature

    Get PDF
    MC carbide particles (with Hafnium and/or Tantalum as constituent metallic element, M) were observed to crack extensively in a cast polycrystalline nickel-base superalloy, MAR-M247, when subjected to low-cycle fatigue loading at room temperature. High resolution secondary electron images taken on the surface of a double edge notch test specimen revealed that approximately half the carbide particles cracked in the highly-strained notch section of the specimen. These images further illustrated that the average surface area of cracked particles was approximately three times that of the uncracked particles. Additional analysis illustrated that the cracks within a large number of particles aligned nearly perpendicular to the loading direction. However, high aspect ratio particles (with aspect ratio >3) were prone to incubate cracks aligned along its major axis, independent of the loading direction. Additionally, forward-scattered imaging often showed a high density of slip bands interaction with most of the particles which cracked. The life limiting crack growth in MAR-M247 was observed to be crystallographic in nature, as the crack grew along slip bands as measured by high-resolution electron backscatter diffraction, even after spanning many grains. Statistically representative microstructure models of MAR-M247 were generated and used in the crystal plasticity finite element simulations. As expected, there was a significant variation in the computed stress state among constituent carbide particles. The stress state of the carbide particles was found to be heavily influenced by the stress in surrounding grains and the orientation of the major axis of the particles with respect to applied load direction. For particles that intersect the free-surface, stress was found to be highly concentrated at the free surface and a positive correlation between the magnitude of free-surface area and the maximum principal stress was found. Additionally, high stress concentrations were observed in regions where carbide particles intersect grain boundaries

    Modeling and Characterization of Damage Processes in Metallic Materials

    Get PDF
    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed

    A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation

    Get PDF
    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated

    Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

    Get PDF
    Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections

    Characterization of Titanium Alloys Produced by Electron Beam Directed Energy Deposition

    Get PDF
    Functionally graded materials offer the potential to improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a component. Additive manufacturing techniques enable the fabrication of such graded materials and structures. While examining several titanium alloys, this paper focuses on Ti-8Al-1Er as it has a unique microstructure that is only feasible when produced by rapid solidification methods like electron beam directed energy deposition, an additive manufacturing process. The results show that, when mixed, Ti-8Al-1Er and commercially-pure titanium uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. At discontinuous interfaces between Ti-8Al-1Er and commercially-pure titanium, the crack growth behavior progresses smoothly across the discontinuity as the crack transitions from one crack growth regime into another. Studies on monolithic samples shows the mechanisms of damage in the Ti-8Al-1Er; specifically, that strain localization occurs near grain boundaries of high mis-orientation on the microscale and that twinning and dislocation density is concentrated near erbia-strengthening particles (Er2O3) on the nanoscale

    Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas leads to shared local infestations on cattle and deer

    Get PDF
    Background: Rhipicephalus (Boophilus) microplus is a highly-invasive tick that transmits the cattle parasites (Babesia bovis and B. bigemina) that cause cattle fever. R. microplus and Babesia are endemic in Mexico and ticks persist in the United States inside a narrow tick eradication quarantine area (TEQA) along the Rio Grande. This containment area is threatened by unregulated movements of illegal cattle and wildlife like white-tailed deer (WTD; Odocoileus virginianus). Methods: Using 11 microsatellite loci we genotyped 1,247 R. microplus from 63 Texas collections, including outbreak infestations from outside the TEQA. We used population genetic analyses to test hypotheses about ecological persistence, tick movement, and impacts of the eradication program in southern Texas. We tested acaricide resistance with larval packet tests (LPTs) on 47 collections. Results: LPTs revealed acaricide resistance in 15/47 collections (32%); 11 were outside the TEQA and three were resistant to multiple acaricides. Some collections highly resistant to permethrin were found on cattle and WTD. Analysis of genetic differentiation over time at seven properties revealed local gene pools with very low levels of differentiation (F-ST 0.00-0.05), indicating persistence over timespans of up to 29 months. However, in one neighborhood differentiation varied greatly over a 12-month period (F-ST 0.03-0.13), suggesting recurring immigration from distinct sources as another persistence mechanism. Ticks collected from cattle and WTD at the same location are not differentiated (F-ST = 0), implicating ticks from WTD as a source of ticks on cattle (and vice versa) and emphasizing the importance of WTD to tick control strategies. We identified four major genetic groups (K = 4) using Bayesian population assignment, suggesting multiple introductions to Texas. Conclusions: Two dispersal mechanisms give rise to new tick infestations: 1) frequent short-distance dispersal from the TEQA; and 2) rare long-distance, human-mediated dispersal from populations outside our study area, probably Mexico. The threat of cattle fever tick transport into Texas is increased by acaricide resistance and the ability of R. microplus to utilize WTD as an alternate host. Population genetic analyses may provide a powerful tool for tracking invasions in other parts of the world where these ticks are established
    corecore