3,338 research outputs found

    Lights, Camera, Empathy: A Request to Slow the Emergency Medicine Standardized Video Interview Project Study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141594/1/aet210062_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141594/2/aet210062.pd

    Twitching motility among pathogenic Xylella fastidiosa isolates and the influence of bovine serum albumin on twitching-dependent colony fringe morphology

    Get PDF
    Fourteen Xylella fastidiosa isolates from grapevines exhibiting Pierce's disease symptoms in California, Texas, and South Carolina were examined for type IV pilus-mediated twitching motility, a phenotype previously observed in a Temecula isolate from California. All isolates except one from South Carolina (SC 19A97) exhibited colonies with a peripheral fringe on PW agar, a feature indicative of twitching motility; however, when individual cells of SC 19A97 were examined at higher magnifications twitching motility was observed. The presence and width of colony peripheral fringes were related to the amount of bovine serum albumin (BSA) present in the medium; no or low levels of BSA (0-1.8 g L−1) permitted development of the widest fringe, whereas higher levels (3.5-6.0 g L−1) severely limited, and in many instances prevented, peripheral fringe development. The growth rate of the wild-type Temecula isolate in PW broth with different concentrations of BSA was similar for all tested concentrations of BSA; however, growth was significantly reduced in medium without BS

    Operator independent reliability of direct augmented reality navigated pedicle screw placement and rod bending

    Full text link
    Background AR based navigation of spine surgeries may not only provide accurate surgical execution but also operator independency by compensating for potential skill deficits. “Direct” AR-navigation, namely superposing trajectories on anatomy directly, have not been investigated regarding their accuracy and operator's dependence. Purpose of this study was to prove operator independent reliability and accuracy of both AR assisted pedicle screw navigation and AR assisted rod bending in a cadaver setting. Methods Two experienced spine surgeons and two biomedical engineers (laymen) performed independently from each other pedicle screw instrumentations from L1-L5 in a total of eight lumbar cadaver specimens (20 screws/operator) using a fluoroscopy-free AR based navigation method. Screw fitting rods from L1 to S2-Ala-Ileum were bent bilaterally using an AR based rod bending navigation method (4 rods/operator). Outcome measures were pedicle perforations, accuracy compared to preoperative plan, registration time, navigation time, total rod bending time and operator's satisfaction for these procedures. Results 97.5% of all screws were safely placed (<2 mm perforation), overall mean deviation from planned trajectory was 6.8±3.9°, deviation from planned entry point was 4±2.7 mm, registration time per vertebra was 2:25 min (00:56 to 10:00 min), navigation time per screw was 1:07 min (00:15 to 12:43 min) rod bending time per rod was 4:22 min (02:07 to 10:39 min), operator's satisfaction with AR based screw and rod navigation was 5.38±0.67 (1 to 6, 6 being the best rate). Comparison of surgeons and laymen revealed significant difference in navigation time (1:01 min; 00:15 to 3:00 min vs. 01:37 min; 00:23 to 12:43 min; p = 0.004, respectively) but not in pedicle perforation rate. Conclusions Direct AR based screw and rod navigation using a surface digitization registration technique is reliable and independent of surgical experience. The accuracy of pedicle screw insertion in the lumbar spine is comparable with the current standard techniques

    Migration Strategies Vary in Space, Time, and Among Species in the Smallfish Metacommunity of the Everglades

    Get PDF
    Spatial ecology and movement strategies of aquatic organisms may limit their response to human-caused drying of wetland habitats. We characterized the movement strategies of the most abundant species of fish in the wetlands of the Everglades (USA) to better understand how they cope with annual fluctuations in aquatic habitat size. Over a six-year period, we used a sampling method designed to measure the density, activity levels, and movement direction of small fishes. We estimated changes in displacement speed and directional bias to identify patterns of movement that different fishes use to disperse over the gradient of disturbance in this environment. Movement of fishes ranged from highly active and directed to passive and random, and varied with hydrological condition (water rising, stable, or dropping). Six of the eight species studied displayed directed movement (possibly displaying taxis along environmental gradients) that varied in both speed and directional bias in response to hydrological cues. The remaining two species did not adjust the direction that they moved in response to hydrological cues, but their activity levels increased. Moving with directional bias may improve a fish\u27s chance of early arrival in a newly available habitat or of escaping the risk of desiccation in drying wetlands. Fishes that change activity levels may improve their likelihood of reaching favorable environments by increasing diffusion rates and greater sampling of the environment. Interspecific variation in movement strategies is predicted to play a large role in community structure and may be a primary driver of the dynamics of the Everglades fish metacommunity

    A cascade of magnetic field induced spin transitions in LaCoO3

    Full text link
    We present magnetization and magnetostriction studies of the insulating perovskite LaCoO3 in magnetic fields approaching 100 T. In marked contrast with expectations from single-ion models, the data reveal two distinct first-order spin transitions and well-defined magnetization plateaux. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by strong interactions between different electronic -- and therefore spin -- configurations of Co3+ ions. We propose a model of these interactions that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.Comment: 5 pages + supplementary materials, 5 figure
    corecore