3,894 research outputs found

    Hydraulic brake safety valve

    Get PDF
    Safety device, consisting of three separate fluid chambers, insures that two wheels of a brake system continue to function if a failure occurs

    Model selection applied to reconstruction of the Primordial Power Spectrum

    Full text link
    The preferred shape for the primordial spectrum of curvature perturbations is determined by performing a Bayesian model selection analysis of cosmological observations. We first reconstruct the spectrum modelled as piecewise linear in \log k between nodes in k-space whose amplitudes and positions are allowed to vary. The number of nodes together with their positions are chosen by the Bayesian evidence, so that we can both determine the complexity supported by the data and locate any features present in the spectrum. In addition to the node-based reconstruction, we consider a set of parameterised models for the primordial spectrum: the standard power-law parameterisation, the spectrum produced from the Lasenby & Doran (LD) model and a simple variant parameterisation. By comparing the Bayesian evidence for different classes of spectra, we find the power-law parameterisation is significantly disfavoured by current cosmological observations, which show a preference for the LD model.Comment: Minor changes to match version accepted by JCA

    One More Awareness Gap? The Behaviour–Impact Gap Problem

    Get PDF
    Preceding research has made hardly any attempt to measure the ecological impacts of pro-environmental behaviour in an objective way. Those impacts were rather supposed or calculated. The research described herein scrutinized the ecological impact reductions achieved through pro-environmental behaviour and raised the question how much of a reduction in carbon footprint can be achieved through voluntary action without actually affecting the socio-economic determinants of life. A survey was carried out in order to measure the difference between the ecological footprint of “green” and “brown” consumers. No significant difference was found between the ecological footprints of the two groups—suggesting that individual pro-environmental attitudes and behaviour do not always reduce the environmental impacts of consumption. This finding resulted in the formulation of a new proposition called the BIG (behaviour–impact gap) problem, which is an interesting addition to research in the field of environmental awareness gaps

    Particle motion in the field of a five-dimensional charged black hole

    Full text link
    In this paper, we have investigated the geodesics of neutral particles near a five-dimensional charged black hole using a comparative approach. The effective potential method is used to determine the location of the horizons and to study radial and circular trajectories. This also helps us to analyze the stability of radial and circular orbits. The radius of the innermost stable circular orbits have also been determined. Contrary to the case of massive particles for which, the circular orbits may have up to eight possible values of specific radius, we find that the photons will only have two distinct values for the specific radii of circular trajectories. Finally we have used the dynamical systems analysis to determine the critical points and the nature of the trajectories for the timelike and null geodesics.Comment: 15 pages, accepted for publication in Astrophysics and Space Scienc

    Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation

    Full text link
    The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have been studied within the framework of the quasistatic approximation. A general method has been proposed for finding the analytical expressions describing the potential and frequencies of the plasmon oscillations of an arbitrary multipolarity order. The analytical expressions have been derived for an electric potential and plasmon oscillation frequencies of the first 24 modes. Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure

    Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans

    Get PDF
    Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report. Matches version accepted by JHE

    Dark Matter in the MSSM

    Full text link
    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.Comment: 27 pages, 19 figs; Journal version in NJP issue "Focus on Dark Matter and Particle Physics". Previous version had 26 pages, 19 figures. Text and some figures have been update

    CMB Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile

    Full text link
    We report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT. MINT consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration. The signal band is subdivided by a monolithic channelizer, after which the correlations between antennas are performed digitally. The typical receiver sensitivity in a 2 GHz band is 1.4 mK sqrt(s). MINT observed the cosmic microwave background (CMB) from the Chilean Altiplano. The site has a median nighttime atmospheric temperature of 9 K at zenith (exclusive of the CMB). Observations of Mars, Jupiter, and a telescope-mounted calibration source establish the system's phase and magnitude stability. MINT is the first CMB-dedicated interferometer to operate above 50 GHz. The same type of system can be used to probe the Sunyaev-Zel'dovich effect in galaxy clusters near the SZ null at 217 GHz. We present an analysis of sideband-separated, digitally sampled data recorded by the array. Based on 215 hours of data taken in late 2001, we set an upper limit on the CMB anisotropy in a band of width Delta ell=700 around ell=1540 of delta T < 105 microK (95% conf). Increased sensitivity can be achieved with more integration time, greater bandwidth, and more elements.Comment: 12 pages, 4 figures. v2: Final ApJS version; rewritten analysis section made more clea
    • 

    corecore