10,003 research outputs found

    The random phase approximation applied to ice

    Full text link
    Standard density functionals without van der Waals interactions yield an unsatisfactory description of ice phases, specifically, high density phases occurring under pressure are too unstable compared to the common low density phase Ih_h observed at ambient conditions. Although the description is improved by using functionals that include van der Waals interactions, the errors in relative volumes remain sizable. Here we assess the random phase approximation (RPA) for the correlation energy and compare our results to experimental data as well as diffusion Monte Carlo data for ice. The RPA yields a very balanced description for all considered phases, approaching the accuracy of diffusion Monte Carlo in relative energies and volumes. This opens a route towards a concise description of molecular water phases on surfaces and in cavities

    Pulsar timing analysis in the presence of correlated noise

    Full text link
    Pulsar timing observations are usually analysed with least-square-fitting procedures under the assumption that the timing residuals are uncorrelated (statistically "white"). Pulsar observers are well aware that this assumption often breaks down and causes severe errors in estimating the parameters of the timing model and their uncertainties. Ad hoc methods for minimizing these errors have been developed, but we show that they are far from optimal. Compensation for temporal correlation can be done optimally if the covariance matrix of the residuals is known using a linear transformation that whitens both the residuals and the timing model. We adopt a transformation based on the Cholesky decomposition of the covariance matrix, but the transformation is not unique. We show how to estimate the covariance matrix with sufficient accuracy to optimize the pulsar timing analysis. We also show how to apply this procedure to estimate the spectrum of any time series with a steep red power-law spectrum, including those with irregular sampling and variable error bars, which are otherwise very difficult to analyse.Comment: Accepted by MNRA

    Towards Einstein-Podolsky-Rosen quantum channel multiplexing

    Full text link
    A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve as a resource for, e.g. independent quantum key distribution or teleportation protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies. We report on the experimental implementation of the N=1 case through the interference of two squeezed states, extracted from a single broadband squeezed field, and demonstrate all techniques required for multiplexing (N>1). Quantum channel frequency multiplexing can be used to optimize the exploitation of a broadband squeezed field in a quantum information task. For instance, it is useful if the bandwidth of the squeezed field is larger than the bandwidth of the homodyne detectors. This is currently a typical situation in many experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of our work and its possible applicatio

    The impact of grassland management regime on the community structure of selected bacterial groups in soils

    Get PDF
    The impact of long-term grassland management regimes on microbial community structure in soils was assessed using multivariate analysis of polymerase chain reaction^denaturing gradient gel electrophoresis (PCR^DGGE) banding patterns of selected bacterial groups and PLFA (phospholipid fatty acid) profiling. The management regimes assessed were inorganic nitrogen (N) fertiliser application and soil drainage. PCR^DGGE profiles of the eubacteria, actinomycetes, ammonia oxidisers and pseudomonads were assessed by principal co-ordinate analysis of similarity indices which were generated from binary data using both Dice and Jaccard coefficients. The analysis of binary DGGE data revealed significant impacts of N fertiliser on the eubacterial and actinomycete community structure using the Jaccard coefficient, whilst N fertiliser had a significant impact on the actinomycete community structure only when using similarity indices generated from the Dice coefficient. Soil drainage had a significant impact on the community structures of the actinomycetes and the pseudomonads using both Dice and Jaccard derived similarity indices. Multivariate analysis of principal components derived from PLFA profiling revealed that N fertiliser had a significant impact on the microbial community structure. Although drainage alone was not a significant factor in discriminating between PLFA community profiles of the different treatments, there was a significant interaction with N fertiliser. Analysis of principal component analysis (PCA) loadings revealed that PLFAs i15:0 and i17:0 were partly responsible for the clustering away of the undrained^N fertilised treatment. Although soil management regime influenced some background soil data, correlation analysis using PC1 from PLFA data revealed no significant relationship with soil organic matter, pH, total C and total N

    A Bayesian parameter estimation approach to pulsar time-of-arrival analysis

    Full text link
    The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promises to achieve direct gravitational wave detection within the next 5-10 years. While there are many parallel efforts being made in the improvement of telescope sensitivity, the detection of stable millisecond pulsars and the improvement of the timing software, there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly affect the ability to detect GWs through pulsar timing, may be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar "search-mode" data and pre-folded data. These methods are applied to simulated toy-model examples and in this initial work we focus on the issue of uncertainties in the folding period. The final results of our analysis are expressed in the form of posterior probability distributions on the signal parameters (including the TOA) from a single observation.Comment: 16 pages, 4 figure

    Ab-initio spin dynamics applied to nanoparticles: canted magnetism of a finite Co chain along a Pt(111) surface step edge

    Full text link
    In order to search for the magnetic ground state of surface nanostructures we extended first principles adiabatic spin dynamics to the case of fully relativistic electron scattering. Our method relies on a constrained density functional theory whereby the evolution of the orientations of the spin-moments results from a semi-classical Landau-Lifshitz equation. This approach is applied to a study of the ground state of a finite Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with the experiment. Furthermore we observe noncollinearity of the atom-resolved spin and orbital moments. In terms of magnetic force theorem calculations we also demonstrate how a reduction of symmetry leads to the existence of canted magnetic states.Comment: 4 pages, ReVTeX + 3 figures (Encapsulated Postscript), submitted to PR

    Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    Get PDF
    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.Comment: Accepted for publication in PAS

    Magnetically-controlled velocity selection in a cold atom sample using stimulated Raman transitions

    Full text link
    We observe velocity-selective two-photon resonances in a cold atom cloud in the presence of a magnetic field. We use these resonances to demonstrate a simple magnetometer with sub-mG resolution. The technique is particularly useful for zeroing the magnetic field and does not require any additional laser frequencies than are already used for standard magneto-optical traps. We verify the effects using Faraday rotation spectroscopy.Comment: 5 pages, 6 figure
    corecore