719 research outputs found

    Zero drift infrared radiation thermometer using chopper stabilised pre-amplifier

    Get PDF
    A zero-drift, mid–wave infrared (MWIR) thermometer constructed using a chopper stabilised operational amplifier (op-amp) was compared against an identical thermometer that utilised a precision op-amp. The chopper stabilised op-amp resulted in a zero-drift infrared radiation thermometer (IRT) with approximately 75% lower offset voltage, 50% lower voltage noise and less susceptibility to perturbation by external sources. This was in comparison to the precision op-amp IRT when blanked by a cover at ambient temperature. Significantly, the zero-drift IRT demonstrated improved linearity for the measurement of target temperatures between 20 °C and 70 °C compared to the precision IRT. This eases the IRT calibration procedure, leading to improvement in the tolerance of the temperature measurement of such low target temperatures. The zero-drift IRT was demonstrated to measure a target temperature of 40 °C with a reduction in the root mean square (RMS) noise from 5 K to 1 K compared to the precision IRT

    An InGaAlAs-InGaAs two-color photodetector for ratio thermometry

    Get PDF
    We report the evaluation of a molecular-beam epitaxy grown two-color photodetector for radiation thermometry. This two-color photodetector consists of two p+in+ diodes, an In0.53Ga0.25Al0.22As (hereafter InGaAlAs) p+in+ diode, which has a cutoff wavelength of 1180 nm, and an In0.53Ga0.47As (hereafter InGaAs) p+in+ diode with a cutoff wavelength of 1700 nm. Our simple monolithic integrated two-color photodetector achieved comparable output signal and signal-to-noise (SNR) ratio to that of a commercial two-color Si-InGaAs photodetector. The InGaAlAs and InGaAs diodes detect blackbody temperature as low as 275°C and 125°C, respectively, with an SNR above 10. The temperature errors extracted from our data are 4°C at 275°C for the InGaAlAs diode and 2.3°C at 125°C for the InGaAs diode. As a ratio thermometer, our two-color photodetector achieves a temperature error of 12.8°C at 275°C, but this improves with temperature to 0.1°C at 450°C. These results demonstrated the potential of InGaAlAs-InGaAs two-color photodetector for the development of high performance two-color array detectors for radiation thermometry and thermal imaging of hot objects

    The Water Incident Database (WAID) 2012 to 2019: a systematic evaluation of the documenting of UK drownings

    Get PDF
    Background. Death by drowning is a leading cause of accidental death in the United Kingdom (UK) and worldwide. The World Health Organization (WHO) states that effective documentation of drowning is required to describe drowning frequency and to underpin effective drowning prevention intervention, thus improving the quality of data describing drowning frequency represents a key initiative. The water incident database (WAID) has been used to document UK fatal and non-fatal water-based incidents since 2009. WAID has not undergone a systematic evaluation of its data or data collection procedures to establish if the database meets the WHO requirements. The present study investigated the characteristics of UK fatal drowning incidents and audited current WAID data capture procedures. Methods. Data for the fatal drowning cases recorded between 2012 and 2019 were reviewed. Descriptive data were generated 1) to describe fatal drownings in the UK's WAID in this period; 2) a sub-set of drownings were audited i) for completeness of data entry and, based on source documents, ii) for quality of data entry; 3) these processes were used to make recommendations for onward revisions to WAID. Results. A total of 5,501 fatalities were recorded between 2012-2019. Drowning was most frequent amongst males aged 35 to 60 years (n=1,346), whilst suspected accidents and suicides accounted for 44% and 35% of fatalities. Suicide by drowning was at a peak in the most recent year of data analysed (i.e., 2019; 279 cases) highlighting an urgent need for targeted intervention. Audit part 2i) indicated that 16% of all fields were incomplete, thus indicating potential redundancy, duplication, or the need for onward review. Audit part 2ii) indicated high levels of agreement (80±12%) between audited cases and the ‘true’ WAID entries. Conclusions. This study confirms WAID as a rigorous, transparent and effective means of documenting UK drownings thereby meeting WHO requirements for data quality; yet future improvements are recommended. Such findings allow researchers and policy makers to use WAID to further investigate UK drowning with a view to improving public safety measures and drowning prevention interventions. Observations alongside several expert recommendations have informed a revised version of WAID

    Low-cost hyperspectral imaging system: Design and testing for laboratory-based environmental applications

    Get PDF
    The recent surge in the development of low-cost, miniaturised technologies provides a significant opportunity to develop miniaturised hyperspectral imagers at a fraction of the cost of currently available commercial set-ups. This article introduces a low-cost laboratory-based hyperspectral imager developed using commercially available components. The imager is capable of quantitative and qualitative hyperspectral measurements, and it was tested in a variety of laboratory-based environmental applications where it demonstrated its ability to collect data that correlates well with existing datasets. In its current format, the imager is an accurate laboratory measurement tool, with significant potential for ongoing future developments. It represents an initial development in accessible hyperspectral technologies, providing a robust basis for future improvements

    Miniature uncooled and unchopped fiber optic infrared thermometer for application to cutting tool temperature measurement

    Get PDF
    A new infrared thermometer, sensitive to wavelengths between 3 μm and 3.5 μm, has been developed. It is based on an Indium Arsenide Antimony (InAsSb) photodiode, a transimpedance amplifier, and a sapphire fiber optic cable. The thermometer used an uncooled photodiode sensor and received infrared radiation that did not undergo any form of optical chopping, thereby, minimizing the physical size of the device and affording its attachment to a milling machine tool holder. The thermometer is intended for applications requiring that the electronics are located remotely from high-temperature conditions incurred during machining but also affording the potential for use in other harsh conditions. Other example applications include: processes involving chemical reactions and abrasion or fluids that would otherwise present problems for invasive contact sensors to achieve reliable and accurate measurements. The prototype thermometer was capable of measuring temperatures between 200 °C and 1000 °C with sapphire fiber optic cable coupling to high temperature conditions. Future versions of the device will afford temperature measurements on a milling machine cutting tool and could substitute for the standard method of embedding thermocouple wires into the cutting tool inserts. Similarly, other objects within harsh conditions could be measured using these techniques and accelerate developments of the thermometer to suit particular applications

    An accurate device for apparent emissivity characterisation in controlled atmospheric conditions up to 1423 K

    Get PDF
    Emissivity is a material property that must be measured before an accurate non-contact temperature measurement can be made. We have developed a novel instrument for measuring apparent emissivity under a controlled atmosphere, providing data for applications in radiation thermometry. Our instrument employs a split furnace, a sample-blackbody component, two custom designed radiometers and a controlled atmospheric system. We measure across the temperature range from 973 to 1423 K and spectral range from 0.85 to 1.1 lm; this range is matched to the majority of high temperature radiation thermometers. The sample and reference approximate-blackbody are heated and maintained in thermal equilibrium, with a temperature difference of better than 1 K at 1423 K. The combined standard uncertainty of the system is lower than 0.0590 (at k=2) over the whole temperature range. Apparent emissivity of type 304 stainless steel (SS304) was studied under different oxidising procedures. Nitrogen and compressed air were input into the system to control the oxidisation process. We elucidated the relationship between the apparent emissivity variations and the surface composition changes of SS304 during oxidisation. Our study aims towards accurate and traceable apparent emissivity data, with well investigated uncertainty, for use in radiation thermometry

    Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase HPLC

    Get PDF
    Long double-stranded (ds) RNA is emerging as a novel alternative to chemical and genetically-modified insect and fungal management strategies. The ability to produce large quantities of dsRNA in either bacterial systems, by in vitro transcription, in cell-free systems or in planta for RNA interference applications has generated significant demand for the development and application of analytical tools for analysis of dsRNA. We have utilised atomic force microscopy (AFM) in conjunction with ion-pair reverse-phase high performance liquid chromatography (IP-RP-HPLC) to provide novel insight into dsRNA for RNAi applications. The AFM analysis enabled direct structural characterisation of the A-form duplex dsRNA and accurate determination of the dsRNA duplex length. Moreover, further analysis under non-denaturing conditions revealed the presence of heterogeneous dsRNA species. IP-RP-HPLC fractionation and AFM analysis revealed that these alternative RNA species do not arise from different lengths of individual dsRNA molecules in the product, but represent misannealed RNA species that present as larger assemblies or multimeric forms of the RNA. These results for the first time provide direct structural insight into dsRNA produced both in vivo in bacterial systems and in vitro, highlighting the structural heterogeneity of RNA produced. These results are the first example of detailed characterisation of the different forms of dsRNA from two production systems and establish atomic force microscopy as an important tool for the characterisation of long dsRNA

    Aerosol jet printing polymer dispersed liquid crystals on highly curved optical surfaces and edges

    Get PDF
    We demonstrate a new technique for producing Polymer Dispersed Liquid Crystal (PDLC) devices utilising aerosol jet printing (AJP). PDLCs require two substrates to act as scaffold for the Indium Tin Oxide electrodes, which restricts the device geometries. Our approach precludes the requirement for the second substrate by printing the electrode directly onto the surface of the PDLC, which is also printed. The process has the potential to be precursory to the implementation of non-contact printing techniques for a variety of liquid crystal-based devices on non-planar substrates. We report the demonstration of direct deposition of PDLC films onto non-planar optical surfaces, including a functional device printed over the 90° edge of a prism. Scanning Electron Microscopy is used to inspect surface features of the polymer electrodes and the liquid crystal domains in the host polymer. The minimum relaxation time of the PDLC was measured at 1.3 ms with an 800 Hz, 90 V, peak-to-peak (Vpp) applied AC field. Cross-polarised transmission is reduced by up to a factor of 3.9. A transparent/scattering contrast ratio of 1.4 is reported between 0 and 140 V at 100 Hz

    Modifying the pre-pitch entry practices of professional soccer substitutes may contribute towards improved movement-related performance indicators on match-day: A case study.

    Get PDF
    Modifying a soccer substitute’s pre-pitch-entry activities may represent an opportunity to maximise physical performance and minimise injury-risk following match-introduction. Using a professional team that has previously participated in substitute profiling research, this follow-up case study investigated the effects of a modified match-day protocol that included substitutes; 1) performing a new pre-match warm-up alongside members of the starting team (as opposed to a separate substitute-only warm-up), 2) participating in a staff-led half-time rewarm-up (as opposed to player-led half-time activities), and 3) receiving ongoing education focusing on the efficacy of (re)warm-up activities. English Championship substitutes (n = 15) were monitored using Micro-electromechanical Systems during 13 matches incorporating the modified practices (35 observations). On an individual player basis, data were organised into bouts of warm-up activity (pre-pitch-entry) and five min epochs of match-play (post-pitch-entry). Linear mixed modelling assessed the influence of ‘bout’ and ‘epoch’, position, and scoreline. Substitutes performed 3±1 rewarm-up bouts∙player-1∙match-1 between kick-off and pitch-entry, which were shorter (-17.2 to -27.1 min) and elicited less distance (-696 to -1257 m) than the pre-match warm-up (p≤0.001). Compared with previous data, heightened absolute movement responses were observed during the pre-match and staff-led half-time (re)warm-ups, alongside greater relative distances covered during player-led activities performed between kick-off and pitch-entry. Whilst less distance (-10%) was covered during the second versus first five min period following match-introduction, values remained higher than previously reported. Between pitch-entry and the end of the match, the scoreline improved and worsened following 26% and 11% of substitutions, respectively; a favourable record compared with existing observations. Acknowledging the likely contribution from external factors, this case study reports heightened movement profiles and improved match scorelines when pre-pitch-entry practices were modified. Practitioners should note the potential influence of match-day activities on the physical responses of soccer substitutes and, if deemed necessary, consider adapting their pre-pitch-entry routines accordingly

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review
    • …
    corecore