9,588 research outputs found
Pulsar timing analysis in the presence of correlated noise
Pulsar timing observations are usually analysed with least-square-fitting
procedures under the assumption that the timing residuals are uncorrelated
(statistically "white"). Pulsar observers are well aware that this assumption
often breaks down and causes severe errors in estimating the parameters of the
timing model and their uncertainties. Ad hoc methods for minimizing these
errors have been developed, but we show that they are far from optimal.
Compensation for temporal correlation can be done optimally if the covariance
matrix of the residuals is known using a linear transformation that whitens
both the residuals and the timing model. We adopt a transformation based on the
Cholesky decomposition of the covariance matrix, but the transformation is not
unique. We show how to estimate the covariance matrix with sufficient accuracy
to optimize the pulsar timing analysis. We also show how to apply this
procedure to estimate the spectrum of any time series with a steep red
power-law spectrum, including those with irregular sampling and variable error
bars, which are otherwise very difficult to analyse.Comment: Accepted by MNRA
Millimeter wave radiometry as a means of determining cometary surface and subsurface temperature
Thermal emission spectra for a variety of cometary nucleus models were evaluated by a radiative transfer technique adapted from modeling of terrestrial ice and snow fields. It appears that millimeter wave sensing from an interplanetary spacecraft is the most effective available means for distinguishing between alternate models of the nucleus and for evaluating the thermal state of the layer which is below the instantaneous surface where modern theories of the nucleus indicate that sublimation of the cometary volatiles actually occurs
Space missions to comets
The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed
Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project
The first direct detection of gravitational waves may be made through
observations of pulsars. The principal aim of pulsar timing array projects
being carried out worldwide is to detect ultra-low frequency gravitational
waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by
coalescing supermassive binary black holes in the cores of merged galaxies. It
is also possible that a detectable signal could have been produced in the
inflationary era or by cosmic strings. In this paper we review the current
status of the Parkes Pulsar Timing Array project (the only such project in the
Southern hemisphere) and compare the pulsar timing technique with other forms
of gravitational-wave detection such as ground- and space-based interferometer
systems.Comment: Accepted for publication in PAS
Health service patterns in rural and urban areas : a test between availability and use
This research was supported in part by Public Health Service Research Grant HS 00015--P. [2].Digitized 2007 AES MoU.Includes bibliographical references (page 43)
- …