24 research outputs found

    Giardia duodenalis in feedlot cattle from the central and western United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Giardia duodenalis </it>is a ubiquitous protozoan parasite that has emerged as a significant opportunistic human pathogen. <it>G. duodenalis </it>may have a deleterious effect on animal growth and performance, therefore its potential as a production limiting organism should not be discounted. We therefore undertook this study to determine management and environmental factors in feedlots that influence the prevalence and environmental load of <it>G. duodenalis </it>cysts in fecal material deposited by feedlot cattle in the central and western United States.</p> <p>Results</p> <p>Twenty two feedlots from 7 states were included in the study, and up to 240 fecal samples were collected from pen floors of up to 6 pens per feedlot. <it>Giardia duodenalis </it>cysts were identified and counted using direct immunofluorescent microscopy. The estimated overall point prevalence of <it>G. duodenalis </it>was 19.1%, representing feedlots from a wide range of climates and management systems. Pen-level prevalence varied from 0 to 63.3%, with pen-level shedding estimates ranging from 0 to 261,000 cysts/g feces. Higher environmental temperatures, increased animal density, and increased time in the feedlot were associated with a lower prevalence of <it>G. duodenalis</it>. Removing manure before placing a new group of cattle in a pen was associated with a decreased prevalence of <it>G. duodenalis </it>in fecal pats. Using coccidiostats as a feed additive was associated with a higher prevalence of <it>Giardia</it>.</p> <p>Conclusion</p> <p>Management practices could be employed that would limit the probability that feedlot cattle shed <it>G. duodenalis </it>in their feces and therefore potentially limit contamination of their environment.</p

    Exercise versus usual care after non-reconstructive breast cancer surgery (UK PROSPER): multicentre randomised controlled trial and economic evaluation

    Get PDF
    Objective To evaluate whether a structured exercise programme improved functional and health related quality of life outcomes compared with usual care for women at high risk of upper limb disability after breast cancer surgery. Design Multicentre, pragmatic, superiority, randomised controlled trial with economic evaluation. Setting 17 UK National Health Service cancer centres. Participants 392 women undergoing breast cancer surgery, at risk of postoperative upper limb morbidity, randomised (1:1) to usual care with structured exercise (n=196) or usual care alone (n=196). Interventions Usual care (information leaflets) only or usual care plus a physiotherapy led exercise programme, incorporating stretching, strengthening, physical activity, and behavioural change techniques to support adherence to exercise, introduced at 7-10 days postoperatively, with two further appointments at one and three months. Main outcome measures Disability of Arm, Hand and Shoulder (DASH) questionnaire at 12 months, analysed by intention to treat. Secondary outcomes included DASH subscales, pain, complications, health related quality of life, and resource use, from a health and personal social services perspective. Results Between 26 January 2016 and 31 July 2017, 951 patients were screened and 392 (mean age 58.1 years) were randomly allocated, with 382 (97%) eligible for intention to treat analysis. 181 (95%) of 191 participants allocated to exercise attended at least one appointment. Upper limb function improved after exercise compared with usual care (mean DASH 16.3 (SD 17.6) for exercise (n=132); 23.7 (22.9) usual care (n=138); adjusted mean difference 7.81, 95% confidence interval 3.17 to 12.44; P=0.001). Secondary outcomes favoured exercise over usual care, with lower pain intensity at 12 months (adjusted mean difference on numerical rating scale −0.68, −1.23 to −0.12; P=0.02) and fewer arm disability symptoms at 12 months (adjusted mean difference on Functional Assessment of Cancer Therapy-Breast+4 (FACT-B+4) −2.02, −3.11 to −0.93; P=0.001). No increase in complications, lymphoedema, or adverse events was noted in participants allocated to exercise. Exercise accrued lower costs per patient (on average −£387 (€457; $533) (95% confidence interval −£2491 to £1718; 2015 pricing) and was cost effective compared with usual care. Conclusions The PROSPER exercise programme was clinically effective and cost effective and reduced upper limb disability one year after breast cancer treatment in patients at risk of treatment related postoperative complications

    Bovine Virus Diarrhea (BVD)

    No full text
    Bovine virus diarrhea (BVD) is a complicated disease to discuss as it can result in a wide variety of disease problems from very mild to very severe. BVD can be one of the most devastating diseases cattle encounter and one of the hardest to get rid of when it attacks a herd. The viruses that cause BVD have been grouped into two genotypes, Type I and Type II. The disease syndrome caused by the two genotypes is basically the same, however disease caused by Type II infection is often more severe. The various disease syndromes noted in cattle infected with BVD virus are mainly attributed to the age of the animal when it became infected and to certain characteristics of the virus involved.Diseases caused by BVD infectionFetal BVD infections (infection of the unborn calf): The result of a fetal infection with the BVD virus is usually determined by the age of the fetus at the time of infection. The virus is capable of passing from an infected cow to the unborn fetus which is particularly vulnerable to the BVD virus during the first 6 months of pregnancy. Death of the fetus is common if the infection occurs during the first 120 days of pregnancy and the cow will lose the pregnancy. However, if the fetus survives an early infection, it will be born without a detectable antibody titer and be persistently infected (PI) with the BVD virus. During the first 120 days of gestation, the fetus has an underdeveloped immune system and does not recognize the BVD virus as foreign. The fetus does not mount an immune response against the virus, remains infected, and does not have a detectable anti-BVD titer. It is not uncommon for the surviving fetus to be malformed; blindness, skeletal abnormalities and under-developed brains are common defects noted in such calves. A BVD PI calf may appear normal, be weak at birth, grow poorly, be susceptible to respiratory diseases, and die before they can be weaned. They may also grow normally, reach breeding age, and produce more persistently BVD infected calves (The virus is passed from generation to generation). PI carriers can only be created by infection with BVD virus during the first 110-120 days of pregnancy. These animals shed billions of virus particles every day in their urine, feces, and saliva, and are a source of infection for other animals in the herd. If the fetus becomes infected after 120 days of pregnancy, there may be an abortion but usually, because this aged fetus has a more developed immune system and can elicit an immune response against the BVD virus, a healthy calf is born that has a good level of BVD antibody titer.Subclinical BVD infections: Most animals that become infected with BVD never show signs of disease caused by the virus; however infection can lower the animal’s resistance to other infections, which could result in illness. For example, in feedlot calves, BVD infection may go unnoticed, but the lungs become susceptible to infection with bacteria such as Mannheimia haemolytica (previously called Pasteurella haemolytica) and other agents that cause “shipping fever”. Some people believe that BVD is one of the most significant disease organisms involved with respiratory disease of cattle. Severe acute BVD infections: This disease syndrome is usually (but not always) associated with Type II BVD virus infection. The affected animals will exhibit high fevers (107-110 F), occasional diarrhea, respiratory disease, and they will not eat. Peracute BVD can affect cattle of all ages and often results in death of the animal within 48 hours of disease onset regardless of age.Acute BVD infections: The classic, acute form of BVD is characterized by a fever of 104-106 F, discharge from the nose and eyes, erosions of the muzzle and in the mouth, and diarrhea that may contain mucus and blood. Diarrhea is usually present in every herd that has an outbreak of acute BVD, but diarrhea is not present in every animal that has acute BVD. The percentage of the herd exhibiting clinical disease and dying can vary extremely; however, if "secondary infections" are controlled, most animals survive the acute disease. This syndrome usually occurs in cattle 6 to 24 months of age. Acute Mucosal disease: An animal persistently infected with BVD virus is not able to mount any defense against becoming subsequently infected with a different BVD virus. When a BVD infection is superimposed on a PI animal, mucosal disease usually results. Acute mucosal disease is characterized by fever, profuse, watery diarrhea, erosions of the mouth, lack of appetite, discharge from the eyes and nose, and occasionally lameness. Secondary infections, such as pneumonia and mastitis, are common. Cattle with acute mucosal disease usually die within 3 to 10 days.Chronic Mucosal disease: Some cattle that develop mucosal disease do not die as soon as expected but rather become chronically infected. Cattle with chronic mucosal disease are poor doers, and may have persistently loose stools or intermittent diarrhea, chronic bloat, decreased appetite, weight loss, erosions between the claws, or non-healing skin lesions. Discharge from the eyes and nose, bald spots due to loss of hair, and long-term lameness are also common. Cattle with chronic mucosal disease rarely survive beyond 18 months and ultimately die.Treatment and Prevention of BVD infections There is no effective treatment for infection with BVD, but most cases are subclinical and self-limiting. Antibiotics, fluid and supportive therapy may be indicated to control secondary infections. Offering highly palatable feed could tempt sick animals to eat needed nutrients. Vaccination of susceptible cattle has been the principal approach to the prevention and control of BVD. However, preventing the introduction of BVD into your herd and identifying and eliminating PI animals from your herd are important steps to take to control the disease.Vaccinate calves: Calves should be vaccinated twice with a modified live virus (MLV) vaccine before leaving the herd of origin. Ideally, BVD vaccinations should be completed in the calves at least 30 days prior to weaning, but whatever program you initiate needs to fit with your management system. Check with your veterinarian for specific recommendations for your herd.Vaccinate the cow herd: It is difficult to provide blanket recommendations for vaccinating the cow herd, but some general guidelines can be given. Unvaccinated heifers and cows should be properly vaccinated before breeding to ensure protection for the fetus. All bulls should be properly vaccinated before putting them out with the cows or heifers and new additions should be properly vaccinated before adding them to the herd. Modified live virus vaccines can be safely used in open cows (there are new MLV vaccines safe for pregnant cows if the cows have been previously vaccinated with certain products) and provide long-lasting protection. Killed vaccines are safe for all cattle, but usually don’t provide as strong an immune response and may need more frequent booster vaccinations. Again, check with your veterinarian for specific recommendations.Prevent introduction of BVD into your herd: BVD virus is shed from cattle in the feces and in secretions from the nose and mouth. BVD is also readily transmitted by aerosol droplets and direct contact. Avoiding contact with other cattle is therefore an important step to take to prevent infection from entering your herd. “Good fences make good neighbors”. It is especially important to keep pregnant cows less than 120 days pregnant separated from other cattle. New introductions into your herd need to be tested for PI status.Eliminate PI animals from your herd: Until recently, testing cattle for PI infection was prohibitively expensive but now there are tools available making it feasible to test for and eliminate these “typhoid Mary” animals from the herd. There are two types of test available, one using a skin sample and one using a blood sample: Immunohistochemistry – for this test, a small notch of skin is taken from the edge of the ear, easily done using a pig ear-notching tool. The triangular piece of skin removed should be ¼ to ½ inches per side. Depending on the laboratory the sample will be sent to, the removed skin is placed either in a vial containing formalin or an individual plastic bag. All samples must be clearly labeled with the animals’ identification number. PCR – this test requires that a blood sample in a “purple top” tube be taken and submitted. Again, all samples must be clearly labeled with the individual animal ID.Samples can be sent to a number of different laboratories; three are listed below. Be sure to contact the lab and talk to your veterinarian before taking and sending samples – if you take the wrong samples, all your work may be wasted. Be aware that it is possible to have “false positive” results – some animals may test positive when they are not truly persistently infected, and may need to be re-tested. Your veterinarian can help interpret the results of the testing. (Thank you to Dr. John Maas for the following information) 1. Tulare branch of the California Animal Health &amp; Food Safety Laboratory (CAHFS)CAHFS-Tulare Phone (559) 688-7543 18830 Road 112 Fax (559) 686-4231 Tulare, CA 93274Sample description: Ear notch (triangle notch ¼ to ½ inch per side) in zip lock bag (or whirl pack bag). Refrigerated—not frozen. Ship overnight (not for Saturday arrival). Technique: Immunohistochemistry. Cost: 16.50per15samples,i.e.16.50 per 1-5 samples, i.e. 33.00 for ten (10) samples and 33.00for6samples.Additionalonetimeaccessionfeeisalsocharged.2.UniversityofNebraska,Lincoln,NEVeterinaryDiagnosticCenterUniversityofNebraskaFairStreetandEastCampusLoopP.O.Box82646Lincoln,NE685012646Phone(402)4721434Fax(402)4723094Sampledescription:Earnotch(trianglenotch¼to½inchperside)inneutralbufferedformalin.Leakprooftubesaremandatoryforcontainers.Donotholdskinsamplesinformalinformorethan7dayspriortosubmission.Technique:Immunohistochemistry.Cost:Accessionfee:33.00 for 6 samples. Additional one time accession fee is also charged.2. University of Nebraska, Lincoln, NEVeterinary Diagnostic Center University of Nebraska Fair Street and East Campus Loop P.O. Box 82646 Lincoln, NE 68501-2646 Phone (402) 472-1434 Fax (402) 472-3094Sample description: Ear notch (triangle notch ¼ to ½ inch per side) in neutral-buffered formalin. Leak proof tubes are mandatory for containers. Do not hold skin samples in formalin for more than 7 days prior to submission. Technique: Immunohistochemistry. Cost: Accession fee: 7.00 per each shipment (submission). First sample: 12.00.Two(2)to6samples:12.00. Two (2) to 6 samples: 20.00, multiples of 6: 20.00/sixsamples.3.DavisbranchofCAHFS.CAHFSDavisUniversityofCalifornia,DavisWestHealthSciencesDriveDavis,CAPhone(530)7527578Fax(530)7526253Sampledescription:wholeblood,refrigerated(notfrozen).Shipinleakproofcontainersonicebags(gelbags).Technique:PCR.Cost:20.00/six samples.3. Davis branch of CAHFS.CAHFS-Davis University of California, Davis West Health Sciences Drive Davis, CA Phone (530) 752-7578 Fax (530) 752-6253Sample description: whole blood, refrigerated (not frozen). Ship in leak proof containers on ice bags (gel bags). Technique: PCR. Cost: 22.70 for the first sample, $5.65 per each sample after the first. Additional one time accession fee is also charged

    Progesterone inserts may help to improve breeding readiness in beef heifers

    No full text
    The accurate determination of pubertal status in yearling beef heifers, possibly combined with the use of exogenous progesterone, allows females to produce the maximum number of calves over their lifetimes. This study aimed to determine the reliability of a reproductive tract scoring (RTS) system that combines manual palpation with ultrasound as a measure of pubertal status, and whether the treatment of heifers with progesterone-containing vaginal inserts - followed by breeding on the second estrus after removal of the insert - could result in increased conception rates compared to untreated heifers. Over 2 years, we found that RTS predicted pubertal status reasonably accurately. Progesterone-treated heifers were more likely to exhibit estrus than control heifers, but their overall breeding efficiency was not affected by progesterone treatment. Inadequate nutrition associated with increased pasture stocking density during both breeding seasons likely had a negative effect on the results of our study

    Molecular genealogy tools for white-tailed deer with chronic wasting disease

    Get PDF
    Molecular genetic data provide powerful tools for genealogy reconstruction to reveal mechanisms underlying disease ecology. White-tailed deer (Odocoileus virginianus) congregate in matriarchal groups; kin-related close social spacing may be a factor in the spread of infectious diseases. Spread of chronic wasting disease (CWD), a prion disorder of deer and their cervid relatives, is presumed to be associated with direct contact between individuals and by exposure to shared food and water sources contaminated with prions shed by infected deer. Key aspects of disease ecology are yet unknown. DNA tools for pedigree reconstruction were developed to fill knowledge gaps in disease dynamics in prion-infected wild animals. Kinship indices using data from microsatellite loci and sequence haplotypes of mitochondrial DNA were employed to assemble genealogies. Molecular genealogy tools will be useful for landscape-level population genetic research and monitoring, in addition to epidemiologic studies examining transmission of CWD in captive and free-ranging cervids

    Buffers between grazing sheep and leafy crops augment food safety

    No full text
    The presence of livestock in or near fresh-market vegetable fields has raised concerns about the potential for contaminating produce with pathogenic bacteria. To develop buffer zones for grazing near production of leafy greens, we assessed the prevalence of Escherichia coli O157:H7 and Salmonella species in  sheep that were grazed on alfalfa fields during the winter in California’s Imperial Valley. We found E. coli O157:H7 in 1.8% of fecal samples and 0.4% of soil samples, and Salmonella in 0.8% of fecal samples and 0.4% of soil samples. Our results indicate that sheep grazing on alfalfa in the Imperial Valley have a low prevalence of these pathogens in their feces and that these bacteria are rarely found in soil from fields with grazing sheep. The California Leafy Green Products Handler Marketing Agreement guideline of 30 feet between grazing lands or domestic animals and the crop edge is adequate to minimize potential contamination of nearby crops
    corecore