73 research outputs found
Cosmic particle acceleration by shocks and turbulence in merging galaxy clusters
In this thesis, I study the
formation of large-scale structure and the physics of particle acceleration at
large scales (~Mpc). The object of my study is clusters of galaxies that are in
the formation process. Galaxy clusters form through a sequence of mergers of
sub-clusters. During the formation of galaxy clusters, shocks and turbulence
are generated in the intra-cluster medium (ICM). These shocks and turbulence
(re-)accelerate cosmic ray (CR) particles to relativistic speeds. In the
presence of magnetic fields, the CR particles emit synchrotron radiation that
we can observe with radio telescopes. I also combine radio data with X-ray and
optical data to study these clusters. Studies of these merging galaxy clusters
help us to understand the physics of particle acceleration at cosmic scales
Galaxie
Ultra-steep spectrum emission in the merging galaxy cluster Abell 1914
A number of radio observations have revealed the presence of large synchrotron-emitting sources associated with the intra-cluster medium. There is strong observational evidence that the emitting particles have been (re-)accelerated by shocks and turbulence generated during merger events. The particles that are accelerated are thought to have higher initial energies than those in the thermal pool but the origin of such mildly relativistic particles remains uncertain and needs to be further investigated. The galaxy cluster Abell 1914 is a massive galaxy cluster in which X-ray observations show clear evidence of merging activity. We carried out radio observations of this cluster with the LOw Frequency ARay (LOFAR) at 150 MHz and the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. We also analysed Very Large Array (VLA) 1.4 GHz data, archival GMRT 325 MHz data, CFHT weak lensing data and Chandra observations. Our analysis shows that the ultra-steep spectrum source (4C38.39; α -2), previously thought to be part of a radio halo, is a distinct source with properties that are consistent with revived fossil plasma sources. Finally, we detect some diffuse emission to the west of the source 4C38.39 that could belong to a radio halo
Hidden degree of freedom and critical states in a two-dimensional electron gas in the presence of a random magnetic field
We establish the existence of a hidden degree of freedom and the critical
states of a spinless electron system in a spatially-correlated random magnetic
field with vanishing mean. Whereas the critical states are carried by the
zero-field contours of the field landscape, the hidden degree of freedom is
recognized as being associated with the formation of vortices in these special
contours. It is argued that, as opposed to the coherent backscattering
mechanism of weak localization, a new type of scattering processes in the
contours controls the underlying physics of localization in the random magnetic
field system. In addition, we investigate the role of vortices in governing the
metal-insulator transition and propose a renormalization-group diagram for the
system under study.Comment: 17 pages, 16 figures; Figs. 1, 7, 9, and 10 have been reduced in
quality for e-submissio
The spectacular cluster chain Abell 781 as observed with LOFAR, GMRT, and XMM-Newton
Context: A number of merging galaxy clusters show the presence of large-scale radio emission associated with the intra-cluster medium (ICM). These synchrotron sources are generally classified as radio haloes and radio relics. Aims. Whilst it is commonly accepted that mergers play a crucial role in the formation of radio haloes and relics, not all the merging clusters show the presence of giant diffuse radio sources and this provides important information concerning current models. The Abell 781 complex is a spectacular system composed of an apparent chain of clusters on the sky. Its main component is undergoing a merger and hosts peripheral emission that is classified as a candidate radio relic and a disputed radio halo. Methods. We used new LOw Frequency ARay (LOFAR) observations at 143 MHz and archival Giant Metrewave Radio Telescope (GMRT) observations at 325 and 610 MHz to study radio emission from non-thermal components in the ICM of Abell 781. Complementary information came from XMM-Newton data, which allowed us to investigate the connection with the thermal emission and its complex morphology. Results. The origin of the peripheral emission is still uncertain. We speculate that it is related to the interaction between a head tail radio galaxy and shock. However, the current data allow us only to set an upper limit of M < 1.4 on the Mach number of this putative shock. Instead, we successfully characterise the surface brightness and temperature jumps of a shock and two cold fronts in the main cluster component of Abell 781. Their positions suggest that the merger is involving three substructures. We do not find any evidence for a radio halo either at the centre of this system or in the other clusters of the chain. We place an upper limit to the diffuse radio emission in the main cluster of Abell 781 that is a factor of 2 below the current radio power-mass relation for giant radio haloes
Discovery of a radio halo (and relic) in a M_500 < 2x10^14 M sun cluster
High Energy Astrophysic
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
The Planck clusters in the LOFAR sky: VI. LoTSS-DR2: Properties of radio relics
Large scale structure and cosmolog
- …