355 research outputs found

    iQuantum: A Case for Modeling and Simulation of Quantum Computing Environments

    Full text link
    Today's quantum computers are primarily accessible through the cloud and potentially shifting to the edge network in the future. With the rapid advancement and proliferation of quantum computing research worldwide, there has been a considerable increase in demand for using cloud-based quantum computation resources. This demand has highlighted the need for designing efficient and adaptable resource management strategies and service models for quantum computing. However, the limited quantity, quality, and accessibility of quantum resources pose significant challenges to practical research in quantum software and systems. To address these challenges, we propose iQuantum, a first-of-its-kind simulation toolkit that can model hybrid quantum-classical computing environments for prototyping and evaluating system design and scheduling algorithms. This paper presents the quantum computing system model, architectural design, proof-of-concept implementation, potential use cases, and future development of iQuantum. Our proposed iQuantum simulator is anticipated to boost research in quantum software and systems, particularly in the creation and evaluation of policies and algorithms for resource management, job scheduling, and hybrid quantum-classical task orchestration in quantum computing environments integrating edge and cloud resources.Comment: 10 pages, 8 figure

    The Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath) Is a Novel Copper-containing Three-subunit Enzyme: isolation and charactization

    Get PDF
    The particulate methane monooxygenase (pMMO) is known to be very difficult to study mainly due to its unusual activity instability in vitro. By cultivating Methylococcus capsulatus (Bath) under methane stress conditions and high copper levels in the growth medium, membranes highly enriched in the pMMO with exceptionally stable activity can be isolated from these cells. Purified and active pMMO can be subsequently obtained from these membrane preparations using protocols in which an excess of reductants and anaerobic conditions were maintained during membrane solubilization by dodecyl beta-D-maltoside and purification by chromatography. The pMMO was found to be the major constituent in these membranes, constituting 60-80% of total membrane proteins. The dominant species of the pMMO was found to consist of three subunits, alpha, beta, and gamma, with an apparent molecular mass of 45, 26, and 23 kDa, respectively. A second species of the pMMO, a proteolytically processed version of the enzyme, was found to be composed of three subunits, alpha', beta, and gamma, with an apparent molecular mass of 35, 26, and 23 kDa, respectively. The alpha and alpha' subunits from these two forms of the pMMO contain identical N-terminal sequences. The gamma subunit, however, exhibits variation in its N-terminal sequence. The pMMO is a copper-containing protein only and shows a requirement for Cu(I) ions. Approximately 12-15 Cu ions per 94-kDa monomeric unit were observed. The pMMO is sensitive to dioxygen tension. On the basis of dioxygen sensitivity, three kinetically distinct forms of the enzyme can be distinguished. A slow but air-stable form, which is converted into a "pulsed" state upon direct exposure to atmospheric oxygen pressure, is considered as type I pMMO. This form was the subject of our pMMO isolation effort. Other forms (types II and III) are deactivated to various extents upon exposure to atmospheric dioxygen pressure. Under inactivating conditions, these unstable forms release protons to the buffer (~10 H+/94-kDa monomeric unit) and eventually become completely inactive

    Effects of foundation mass on dynamic responses of beams subjected to moving oscillators

    Get PDF
    This paper aims at the effects of foundation mass on the dynamic responses of beams subjected to moving oscillators. To achieve this aim, experiments were performed for a beam resting on the foundation considering effects of the foundation model including linear elastic spring, shear layer, viscous damping. In addition, special effects of mass density of foundation during vibration were established to obtain the characteristic parameter of the influence of foundation mass based on natural circular frequency of the structure system determined from FFT plots of the time history of acceleration data. Furthermore, the experimental parameters were used to analyze the influence of the foundation mass on the dynamic response of the beam subjected to moving oscillator. Comparisons between experimental and simulated results showed that the foundation mass showed significant effects on the dynamic characteristic response of the beam system. It increased the general vibrating mass of the structure system. Hence, it decreased of the natural frequency of the structural system and caused a significant increase on the dynamic response of the beam when compared with the case without considering the foundation mass. Finally, the relationships between the foundation properties and the parameters of foundation mass were derived and discussed

    The influence of foundation mass on dynamic response of track-vehicle interaction

    Get PDF
    The influence of foundation mass on the dynamic response of track-vehicle interaction is studied in this paper. The moving vehicle is modeled as a two-axle mass-spring-damper four-degrees-of-freedom system. A new dynamic foundation model, called "Dynamic foundation model" including linear elastic spring, shear layer, viscous damping and foundation mass parameter, is used to analyze the dynamic response of the track-vehicle interaction. The railway track on the new dynamic foundation model subjected to a moving vehicle is regarded as an integrated system. By means of the finite element method and dynamic balance principle, the governing equation of motion for railway track-vehicle-foundation interaction is derived and solved by the step-by-step integration method. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. The influence of foundation mass parameter on the dynamic response of railway track-vehicle interaction is investigated. The numerical results show that with the new dynamic foundation model the foundation mass effects more significantly on the dynamic response of track-vehicle interaction. The study shows that the new dynamic foundation model describes the true behavior of soil in the analysis of dynamic response of structures on the foundation

    Pharmacist-Led Intervention to Enhance Medication Adherence in Patients With Acute Coronary Syndrome in Vietnam:A Randomized Controlled Trial

    Get PDF
    Background: Patient adherence to cardioprotective medications improves outcomes of acute coronary syndrome (ACS), but few adherence-enhancing interventions have been tested in low-income and middle-income countries. Objectives: We aimed to assess whether a pharmacist-led intervention enhances medication adherence in patients with ACS and reduces mortality and hospital readmission. Methods: We conducted a randomized controlled trial in Vietnam. Patients with ACS were recruited, randomized to the intervention or usual care prior to discharge, and followed 3 months after discharge. Intervention patients received educational and behavioral interventions by a pharmacist. Primary outcome was the proportion of adherent patients 1 month after discharge. Adherence was a combined measure of self-reported adherence (the 8-item Morisky Medication Adherence Scale) and obtaining repeat prescriptions on time. Secondary outcomes were (1) the proportion of patients adherent to medication; (2) rates of mortality and hospital readmission; and (3) change in quality of life from baseline assessed with the European Quality of Life Questionnaire - 5 Dimensions - 3 Levels at 3 months after discharge. Logistic regression was used to analyze data. Registration: ClinicalTrials.gov (NCT02787941). Results: Overall, 166 patients (87 control, 79 intervention) were included (mean age 61.2 years, 73% male). In the analysis excluding patients from the intervention group who did not receive the intervention and excluding all patients who withdrew, were lost to follow-up, died or were readmitted to hospital, a greater proportion of patients were adherent in the intervention compared with the control at 1 month (90.0% vs. 76.5%; adjusted OR = 2.77; 95% CI, 1.01-7.62) and at 3 months after discharge (90.2% vs. 77.0%; adjusted OR = 3.68; 95% CI, 1.14-11.88). There was no significant difference in median change of EQ-5D-3L index values between intervention and control [0.000 (0.000; 0.275) vs. 0.234 (0.000; 0.379); p = 0.081]. Rates of mortality, readmission, or both were 0.8, 10.3, or 11.1%, respectively; with no significant differences between the 2 groups. Conclusion: Pharmacist-led interventions increased patient adherence to medication regimens by over 13% in the first 3 months after ACS hospital discharge, but not quality of life, mortality and readmission. These results are promising but should be tested in other settings prior to broader dissemination

    Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure-volume relationship

    Get PDF
    A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m-2 s-1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport.HTN was supported by an Australia Awards PhD scholarshipand the research was supported by Australian ResearchCouncil Discovery Grant (DP150104437) to MCB and MM;PM was supported by ARC grant FT11010045
    corecore