809 research outputs found

    Expression and functional role of formyl peptide receptor in human bone marrow-derived mesenchymal stem cells

    Get PDF
    AbstractWe investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by Gi proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of Gi proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2–26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair

    YAF2 promotes TP53-mediated genotoxic stress response via stabilization of PDCD5

    Get PDF
    AbstractProgrammed cell death 5 (PDCD5) plays a crucial role in TP53-mediated apoptosis, but the regulatory mechanism of PDCD5 itself during apoptosis remains obscure. We identified YY1-associated factor 2 (YAF2) as a novel PDCD5-interacting protein in a yeast two-hybrid screen for PDCD5-interacting proteins. We found that YY1-associated factor 2 (YAF2) binds to and increases PDCD5 stability by inhibiting the ubiquitin-dependent proteosomal degradation pathway. However, knocking-down of YAF2 diminishes the levels of PDCD5 protein but not the levels of PDCD5 mRNA. Upon genotoxic stress response, YAF2 promotes TP53 activation via association with PDCD5. Strikingly, YAF2 failed to promote TP53 activation in the deletion of PDCD5, whereas restoration of wild-type PDCD5WT efficiently reversed the ineffectiveness of YAF2 on TP53 activation. Conversely, PDCD5 efficiently overcame the knockdown effect of YAF2 on ET-induced TP53 activation. Finally, impaired apoptosis upon PDCD5 ablation was substantially rescued by restoration of PDCD5WT but not YAF2-interacting defective PDCD5E4D nor TP53-interacting defective PDCD5E16D mutant. Our findings uncovered an apoptotic signaling cascade linking YAF2, PDCD5, and TP53 during genotoxic stress responses

    Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties

    Get PDF
    AbstractThe aim of this study was to quantify the contents of individual quercetin glycosides in red, yellow and chartreuse onion by High Performance Liquid Chromatography (HPLC) analysis. Acid hydrolysis of individual quercetin glycosides using 6M hydrochloric acid guided to identify and separate quercetin 7,4′-diglucoside, quercetin 3-glucoside, quercetin 4′-glucoside, and quercetin. The contents of total quercetin glycosides varied extensively among three varieties (ranged from 16.10 to 103.93mg/g DW). Quercetin was the predominant compound that accounted mean 32.21mg/g DW in red onion (43.6% of the total) and 127.92mg/g DW in chartreuse onion (78.3% of the total) followed by quercetin 3-glucoside (28.83 and 24.16mg/g DW) respectively. Quercetin 3-glucoside levels were much higher in yellow onion (43.85mg/g DW) followed by quercetin 30.08mg/g DW. Quercetin 4′-glucoside documented the lowest amount that documented mean 2.4% of the total glycosides. The varied contents of glycosides present in the different onion varieties were significant

    Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor κB-dependent pathway in patients with rheumatoid arthritis

    Get PDF
    Inflammatory mediators have been recognized as being important in the pathogenesis of rheumatoid arthritis (RA). Interleukin (IL)-17 is an important regulator of immune and inflammatory responses, including the induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence for the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. Although some cytokines (IL-15 and IL-23) have been reported to regulate IL-17 production, the intracellular signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the regulation of IL-17 production in RA. Peripheral blood mononuclear cells (PBMC) from patients with RA (n = 24) were separated, then stimulated with various agents including anti-CD3, anti-CD28, phytohemagglutinin (PHA) and several inflammatory cytokines and chemokines. IL-17 levels were determined by sandwich enzyme-linked immunosorbent assay and reverse transcription–polymerase chain reaction. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody with or without anti-CD28 and PHA (P < 0.05). Among tested cytokines and chemokines, IL-15, monocyte chemoattractant protein-1 and IL-6 upregulated IL-17 production (P < 0.05), whereas tumor necrosis factor-α, IL-1β, IL-18 or transforming growth factor-β did not. IL-17 was also detected in the PBMC of patients with osteoarthritis, but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K/Akt pathway; activation of this pathway resulted in a pronounced augmentation of nuclear factor κB (NF-κB) DNA-binding activity. IL-17 production by activated RA PBMC is completely or partly blocked in the presence of the NF-κB inhibitor pyrrolidine dithiocarbamate and the PI3K/Akt inhibitor wortmannin and LY294002, respectively. However, inhibition of activator protein-1 and extracellular signal-regulated kinase 1/2 did not affect IL-17 production. These results suggest that signal transduction pathways dependent on PI3K/Akt and NF-κB are involved in the overproduction of the key inflammatory cytokine IL-17 in RA
    • …
    corecore