
FEBS Letters 581 (2007) 1917–1922

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Expression and functional role of formyl peptide receptor in human
bone marrow-derived mesenchymal stem cells

Mi-Kyoung Kima, Do Sik Minb, Yoon Jeong Parkc, Jae Ho Kimd, Sung Ho Ryue, Yoe-Sik Baea,*

a Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
b Department of Molecular Biology, College of Natural Science, Pusan National University, 609-735, Republic of Korea

c School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
d Department of Physiology, College of Medicine, Pusan National University, Busan 602-739, Republic of Korea

e Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

Received 19 March 2007; revised 27 March 2007; accepted 27 March 2007

Available online 9 April 2007

Edited by Sandro Sonnino
Abstract We investigated the expression of formyl peptide
receptor (FPR) and its functional role in human bone marrow-
derived mesenchymal stem cells (MSCs). We analyzed the
expression of FPR by using ligand-binding assay with radio-
labeled N-formyl-met-leu-phe (fMLF), and found that MSCs
express FPR. FMLF stimulated intracellular calcium increase,
mitogen-activated protein kinases activation, and Akt activation,
which were mediated by Gi proteins. MSCs were chemotactically
migrated to fMLF. FMLF-induced MSC chemotaxis was also
completely inhibited by pertussis toxin, LY294002, and
PD98059, indicating the role of Gi proteins, phosphoinositide
3-kinase, and extracellular signal regulated protein kinase. N-
terminal fragment of annexin-1, Anx-1(2–26), an endogenous
agonist for FPR, also induced chemotactic migration of MSCs.
Thus MSCs express functional FPR, suggesting a new
(patho)physiological role of FPR and its ligands in regulating
MSC trafficking during induction of injured tissue repair.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Since mesenchymal stem cells (MSCs) are precursors that

can be differentiated into several specialized cell types and tis-

sues, they have been regarded as an important therapeutic tool

for clinical application in the field of damaged tissue remodel-

ing and so on [1]. For the proper action of MSCs to differen-
Abbreviations: MSCs, mesenchymal stem cells; FPR, formyl peptide
receptor; fMLF, N-formyl-met-leu-phe; CsH, cyclosporine H; PTX,
pertussis toxin; LY294002, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopy-
ran-4-one; Fura-2/AM, fura-2 pentaacetoxymethylester; BAPTA/AM,
1,2-bis(o-aminophenoxy)ethane-N,N,N0,N0-tetraacetic acid tetra(acet-
oxymethyl) ester; ERK, extracellular signal regulated protein kinase;
PD98059, 2 0-amino-30-methoxyflavone; SB203580, 4-(4-fluorophenyl)-
2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole; [Ca2+]i, intra-
cellular calcium concentration; MAPK, mitogen-activated protein
kinase; PI3K, phosphoinositide 3-kinase
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tiate into a certain type of cells in a specific location, MSCs

should migrate to a site of injury. Several factors that regulate

MSC migration have been reported. They include some che-

mokines including stromal-derived factor-1 [2,3].

Formyl peptide receptor (FPR), a chemoattractant receptor,

is mainly expressed in phagocytic cells and plays an important

role in host defense against pathogen infection [4]. Activation

of FPR induces diverse cellular responses including chemotac-

tic migration and superoxide generation [4]. Recently FPR also

has been reported to be expressed in non-phagocytic cells, such

as fibroblasts [5]. Very recently Viswanathan et al. reported

that human bone marrow-derived mesenchymal stem cells

express functional FPRs [6].

In this study, we investigated the effect of FPR agonists on

the chemotactic migration of MSCs and the signaling pathway

involved in the process.
2. Materials and methods

2.1. Materials
N-Formyl-met-leu-phe (fMLF) was purchased from Sigma (St.

Louis, MO). [3H]-labeled fMLF was obtained from Perkin–Elmer Life
Sciences, Inc. (Boston, MA). Cyclosporin H (CsH) was kindly provided
by Novartis Pharma (Basel, Switzerland). N-terminal fragment of an-
nexin-1, Anx-1(2–26), was purchased from Phoenix Pharmaceuticals,
Inc. (Burlingame, CA). Pertussis toxin (PTX) and 2-(4-morpholinyl)-
8-phenyl-4H-1-benzopyran-4-one (LY294002) were from Calbiochem
(San Diego, CA). Fura-2 pentaacetoxymethylester (fura-2/AM) and
1,2-bis(o-aminophenoxy)ethane-N,N,N 0,N 0-tetraacetic acid tetra(acet-
oxymethyl) ester (BAPTA/AM) were purchased from Molecular
Probes (Eugene, OR). Enhanced chemiluminescence reagents from
Amersham Biosciences (Piscataway, NJ), phospho-extracellular signal
regulated protein kinase (ERK)1/2, phospho-p38 and ERK2 antibodies
were purchased from New England Biolabs (Beverly, MA). Phospho-
Akt antibody, Akt antibody, fibrinogen, and fibronectin were pur-
chased from Sigma (St. Louis, MO). 2 0-Amino-3 0-methoxyflavone
(PD98059) and 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-
pyridyl)-1H-imidazole (SB203580) were obtained from Biomol (Plym-
outh Meeting, PA) and were dissolved in dimethyl sulfoxide before
being added to the cell culture. The final concentrations of dimethyl
sulfoxide in culture were 0.1% or less.

2.2. Isolation and culture of MSCs
Human bone marrow stem cells were isolated as described previ-

ously [7]. Bone marrow stromal cells were isolated and were plated
in T75 flasks for continuous passage in aMEM medium supplemented
with 20% fetal bovine serum and 1% antibiotic–antimycotic solution.
Medium was changed twice weekly, cells detached by trypsin–EDTA
and under passage into fresh culture flasks at a ratio of 1:4 upon
blished by Elsevier B.V. All rights reserved.
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reaching confluence. Cultures were incubated at 37 �C in a humidified
incubator with 5% CO2. Different phenotypic markers of human mes-
enchymal stem cells including CD29, CD44 and CD66 were employed
to confirm the stem cell-like feature of the isolated stromal cells. All the
experiments were done using within passage 6 MSCs. The experimental
procedures were approved by the Institutional Review Board of Seoul
National University Dental Hospital.

2.3. Ligand-binding assay
MSCs were seeded at 5 · 104 cells per well into a 24-well plate and

cultured overnight. Several concentrations of [3H]-labeled fMLF were
added to the cells in the absence or presence of unlabelled 10 lM
fMLF or 10 lM CsH for 3 h at 4 �C with continuous shaking. Specific
binding of [3H]-labeled fMLF was counted using a b-ray counter [8].

2.4. Measurement of intracellular calcium concentration
Intracellular calcium concentration [Ca2+]i was determined using

fura-2/AM [9]. Briefly, MSCs were incubated with 3 lM fura-2/AM
at 37 �C for 50 min in fresh serum free aMEM medium with continu-
ous stirring. 2 · 106 Cells were aliquoted for each assay into Locke’s
solution [9]. Fluorescence was measured at 500 nm at excitation wave-
lengths of 340 nm and 380 nm.

2.5. Western blot analysis
MSCs (2 · 106) were stimulated with the indicated concentrations of

fMLF. Cell extracts were separated in 10% SDS–polyacrylamide gel
and, the proteins were blotted onto a nitrocellulose membrane. Subse-
quently, membranes were incubated with specific antibodies. Antigen–
antibody complexes were visualized after incubating the membrane
C
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Fig. 1. Functional expression of FPR in MSCs. Several concentrations of [3H
or presence of 10 lM of unlabeled fMLF (A). 50 pM [3H]-labeled fMLF w
10 lM of CsH (B). The quantity of bound [3H]-labeled fMLF was determin
three independent experiments (A, B). MSCs were then loaded with fura-2/A
several concentrations of fMLF in the absence or presence of CsH (10 lM
experiments (C). Three differently prepared MSCs were preincubated in the a
with 1 lM of fMLF (D). Relative intracellular Ca2+ concentrations are expres
independent experiments (D). * indicates results significantly different at the P
control (-fMLF). # indicates results significantly different at the P < 0.05 pr
(DMSO treated).
with 1:5000 diluted goat anti-rabbit IgG antibody coupled to horserad-
ish peroxidase and detected by enhanced chemiluminescence.

2.6. Chemotaxis assay
Chemotaxis assays were performed using multiwell chambers (Neu-

roprobe Inc. Gaithersburg, MD) [10]. Polycarbonate membrane of 96-
well chemotaxis chamber was precoated with fibronectin (20 lg/ml).
MSCs were suspended in aMEM at 1 · 106 cells/ml, and 25 ll of this
suspension was placed into the upper well of a chamber separated by
an 8 lm precoated polyhydrocarbon filter from the peptide containing
lower well. After incubation for 12 h at 37 �C, migrated cells were then
counted in three randomly chosen high power fields (400·) [10].

2.7. Statistics
The results are expressed as means ± S.E. of the number of determi-

nations indicated. Statistical significance of differences was determined
by ANOVA. Significance was accepted when P < 0.05.
3. Results

3.1. Expression of FPR in MSCs

To investigate whether MSCs express FPR, we performed a

ligand-binding assay using [3H] fMLF in MSCs. The addition

of various concentrations of [3H] fMLF demonstrated the

concentration-dependent binding of [3H] fMLF to MSCs

(Fig. 1A), which was quantified after subtracting non-specific
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Fig. 3. Activation of Akt by fMLF in MSCs. MSCs were stimulated
with 1 lM of fMLF for various times (A). The cells were stimulated
with various concentrations of fMLF for 5 min (B). MSCs were
preincubated in the absence or presence of 100 ng/ml of PTX for 24 h.
Cells were stimulated with 1 lM of fMLF for 5 min (C). Western blot
analysis was performed using anti-phospho-Akt antibody. The results
shown are representative of at least three independent experiments
(A–C).
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binding. The specific binding of fMLF in MSCs was proven by

adding 0.5 pM of [3H] fMLF, which achieved saturation at ca.

20 pM of [3H] fMLF for 5 · 104 cells (Fig. 1A). The specific

binding of 50 pM of [3H] fMLF was almost completely inhib-

ited by 10 lM of CsH (Fig. 1B). These results indicate that

MSCs express FPR.

3.2. FMLF stimulates intracellular calcium increase via

PTX-sensitive G-protein in MSCs

Previously it has been demonstrated that the activation of

FPR by fMLF causes [Ca2+]i increases [11]. To confirm that

FPR on MSCs is functional, we examined the effect of fMLF

upon [Ca2+]i in MSCs. Stimulation of MSCs with several con-

centrations of fMLF caused [Ca2+]i increase in a concentra-

tion-dependent manner, showing maximal activity at 1 lM

fMLF (Fig. 1C). We also examined the effect of PTX, a specific

inhibitor of Gi/o type G-proteins, on fMLF-induced [Ca2+]i in-

crease. When MSCs were preincubated with 100 ng/ml of PTX

prior to being stimulated with 1 lM fMLF, fMLF-induced

[Ca2+]i increase was completely inhibited (Fig. 1D). FMLF-in-

duced [Ca2+]i increase was commonly observed from three dif-

ferently prepared MSCs (Fig. 1D). These results indicate that

fMLF stimulates [Ca2+]i increase via PTX-sensitive pathway.

3.3. FMLF stimulates mitogen-activated protein kinases in

MSCs

We examined whether fMLF stimulates mitogen-activated

protein kinases (MAPKs) by Western blotting with anti-phos-

pho-specific antibodies to each enzyme. When MSCs were

stimulated with 1 lM fMLF for different times, the phosphor-

ylation levels of ERK and p38 MAPK transiently increased,

showing maximal activity after 5–10 min of stimulation

(Fig. 2A). We also found that stimulation of MSCs with vari-

ous concentrations of fMLF-induced MAPK phosphoryla-
pERK
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Fig. 2. Activation of MAPKs by fMLF in MSCs. MSCs were
stimulated with 1 lM of fMLF for various times (A). The cells were
stimulated with various concentrations of fMLF for 5 min (B). MSCs
were preincubated in the absence or presence of 100 ng/ml of PTX for
24 h. Cells were stimulated with 1 lM of fMLF for 5 min (C). Western
blot analysis was performed using anti-phospho-ERK antibody or
anti-phospho-p38 kinase antibody. The results shown are representa-
tive of at least three independent experiments (A–C).
tion. FMLF-induced ERK and p38 kinase phosphorylations

in a concentration-dependent manner, showing dramatic activ-

ity at 10–1000 nM (Fig. 2B). We investigated the role of PTX-

sensitive G-protein on fMLF-induced MAPK activation.

MSCs were preincubated with 100 ng/ml of PTX prior to being

stimulated with 1 lM fMLF. Pretreatment with PTX dramat-

ically blocked ERK phosphorylation by fMLF (Fig. 2C),

showing that fMLF induces ERK activation in a PTX-sensi-

tive manner.

3.4. FMLF stimulates Akt in MSCs

Akt has been reported to play important roles in the regula-

tion of several cellular responses, such as, cell migration and

cell survival [12]. When MSCs were stimulated with 1 lM

fMLF for different times, Akt phosphorylation was transiently

increased, showing maximal activity after 2–10 min of stimula-

tion and return to baseline 30 min after stimulation (Fig. 3A).

In addition, when MSCs were stimulated with different con-

centrations of fMLF, Akt was activated in a concentration-

dependent manner. At 10–1000 nM fMLF caused dramatic

Akt (Fig. 3B). FMLF-induced Akt phosphorylation was found

to be almost completely inhibited by PTX (Fig. 3C), indicating

that fMLF stimulates Akt activation via a PTX-sensitive path-

way.

3.5. FMLF induces MSC chemotaxis via PTX-sensitive

G-proteins

Since FPR is a chemoattractant receptor and it is involved in

the chemotactic migration of phagocytes [4]. We investigated

the effect of fMLF on MSCs chemotaxis. It was found that

fMLF induced the chemotactic migration of MSCs. Fig. 4A

shows the concentration–responsive curve of fMLF-induced

MSCs migration, and shows maximal activity at 0.1–1 lM.

When MSCs were preincubated with 100 ng/ml of PTX prior

to chemotaxis assays, the numbers of cell migrating toward

fMLF was dramatically reduced (Fig. 4A), which strongly sug-

gested the involvement of PTX-sensitive G-proteins. We also
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Fig. 4. MSC chemotaxis by fMLF and Anx-1(2–26). MSCs were preincubated in the absence or presence of 100 ng/ml of PTX for 24 h (A). Three
differently prepared MSCs were preincubated in the absence or presence of 10 lM CsH for 30 min (B). MSCs were preincubated in the absence or
presence of DMSO, LY294002 (50 lM), PD98059 (50 lM), SB203580 (20 lM), or BAPTA/AM (10 lM) for 15 min (60 min for PD98059 and
BAPTA/AM) (C). The cells (1 · 106 cells/ml in serum free aMEM) were used for chemotaxis assay in the presence of several concentrations of fMLF
(1 lM for B) for 12 h at 37�C (A–C). Various concentrations of Anx-1(2–26) were used for the chemotactic migration (D). Migrated cell numbers
were determined by counting in three high power fields (400·). Data are presented as means ± S.E. of three independent experiments performed
in duplicate (A–D). * indicates results significantly different at the P < 0.05 probability levels as compared to the values obtained from the control
(-fMLF). # indicates results significantly different at the P < 0.05 probability levels as compared to the values obtained from the control (DMSO
treated).
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observed that fMLF-induced chemotactic migration was

observed in three differently prepared MSCs (Fig. 4B). Fur-

thermore, fMLF-induced MSC chemotaxis was almost com-

pletely inhibited by CsH, indicating that fMLF induces MSC

chemotaxis via FPR (Fig. 4B). Several chemoattractants stim-

ulate phosphoinositide 3-kinase (PI3K)-mediated Akt activity,

and that the PI3K pathway is involved in the chemotactic

migration of cells [13,14]. Preincubation of cells with

LY294002 (50 lM), a well-known PI3K inhibitor, for 15 min

at 37 �C prior to stimulation with fMLF was found to inhibit

cellular chemotaxis (Fig. 4C), indicating that MSC activates

the PI3K pathway and that this signaling is required for the

fMLF-induced chemotaxis of MSCs. We also examined the

roles of ERK and p38 kinase on fMLF-induced MSC chemo-

taxis. When MSCs were preincubated with PD98059 (50 lM)

or SB203580 (20 lM) prior to chemotaxis assay, fMLF-in-

duced MSC chemotaxis was found to be dramatically blocked

by PD98059, but not by SB203580 (Fig. 4C). The results indi-

cate that ERK-mediated signaling is involved in fMLF-in-

duced MSC chemotaxis. Because fMLF stimulated [Ca2+]i
increases in MSCs, we examined the role of calcium signaling

on fMLF-induced MSC chemotaxis using a calcium chelator,
BAPTA/AM. At first we observed that preincubation of MSCs

with 10 lM BAPTA/AM for 60 min prior to stimulation with

fMLF completely inhibited fMLF-induced intracellular cal-

cium increase (data not shown). As shown in Fig. 4C, BAP-

TA/AM did not affect on MSC chemotaxis induced by

fMLF, indicating that calcium signaling is not required for

fMLF-induced chemotaxis.

N-terminal fragment of annexin-1, Anx-1(2–26), is an

endogenous host-derived agonist for FPR [15]. In this study

we also tested the effect of annexin-1 on MSC chemotaxis.

As shown in Fig. 4D, stimulation of MSCs with several concen-

trations of Anx-1(2–26) elicited chemotactic migration of

MSCs.
4. Discussion

MSC migration is crucially associated with damaged tissue

remodeling [1]. In response to tissue damage, MSCs migrate

into damaged sites along chemotactic gradient [1]. Until now

various molecules that modulate chemotactic migration of

MSCs have been reported [2,3]. FPR is also important
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chemoattractant receptor, and expression of FPR has been

identified mainly in phagocytic cells, including monocytes,

neutrophils, and dendritic cells [4,16]. Very recently some other

non-leukocytic cells have been demonstrated to express FPR

[5,17]. Some epithelial cells such as lung epithelial cells and

hepatocyte express FPR [18,19]. Furthermore, activation of

FPR by its selective agonist (fMLF and annexin-1) has been

shown to stimulate adhesion, motility, and chemotactic migra-

tion of these epithelial cells [18,19]. However, the role of FPR

agonists in MSC chemotaxis has not been studied. In the pres-

ent study, we found that MSCs express functional FPR and its

specific agonists (fMLF and Anx-1(2–26)) stimulate the che-

motactic migration of the cells. This finding suggests that

FPR has a potential role in tissue remodeling, wound healing,

and various functional aspects related to MSC migration.

Previously annexin-1, a family of phospholipid-binding pro-

teins, has been reported to be found in many tissues such as

lung, bone marrow, and intestine [20]. Annexin-1 is also

known as a 2–4% of the total cytosolic protein in neutrophils

[21]. Annexin-1 has been reported to regulate several cellular

responses [22,23]. Annexin-1 is involved in membrane traffick-

ing and epithelial cell migration and invasion [17]. In Fig. 4D,

we demonstrated that Anx-1(2–26), an endogenous FPR

agonist, induced chemotactic migration of MSCs. Since in

this study we demonstrated that Anx-1(2–26) induced chemo-

tactic migration of MSCs, we suggest a new aspect of annexin-

1 as a regulator of MSC migration which is need for tissue

repairing.

In our study we also investigated the effect of PTX, which

specifically blocks the coupling of G-protein-coupled receptors

to Gi, on fMLF-induced signaling. When MSCs were treated

with 100 ng/ml of PTX for 24 h prior to fMLF stimulation,

fMLF-induced intracellular calcium elevation, ERK phos-

phorylation, and Akt phosphorylation were almost completely

inhibited (Figs. 1D, 2C and 3C). Furthermore, fMLF-induced

chemotactic migration was also completely inhibited by PTX

treatment, as shown in Fig. 4A. These results were correlated

with previous reports that demonstrate fMLF utilizes PTX-

sensitive G-protein-coupled receptor, FPR [4]. We also found

that fMLF-induced MSC chemotaxis via PI3K, and ERK

pathways (Fig. 4C). However, phospholipase C-mediated cal-

cium signaling pathway and p38 kinase pathway were not

found to be involved in fMLF-induced chemotaxis (Fig. 4C).

In view of the fact that calcium signaling and p38 kinase reg-

ulate several kinds of cellular physiologies and that fMLF

stimulates phospholipase C-mediated intracellular calcium in-

crease and p38 kinase, it would be interesting to know the

other functional roles of fMLF in MSCs related to calcium sig-

naling or p38 kinase-dependent processes.

In conclusion, the present study shows that MSCs express

FPR and two of FPR agonists (fMLF and Anx-1(2–26)) in-

duce chemotactic migration of MSCs. Since this study de-

scribes the functional expression of FPR and role of its

agonists in MSC chemotaxis, further studies on the pathologic

and physiologic roles of FPR and its specific agonists are re-

quired.
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