51,760 research outputs found
On pattern classification algorithms - Introduction and survey
Pattern recognition algorithms, and mathematical techniques of estimation, decision making, and optimization theor
Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials
We present four types of infinitely many exactly solvable Fokker-Planck
equations, which are related to the newly discovered exceptional orthogonal
polynomials. They represent the deformed versions of the Rayleigh process and
the Jacobi process.Comment: 17 pages, 4 figure
An Automated Social Graph De-anonymization Technique
We present a generic and automated approach to re-identifying nodes in
anonymized social networks which enables novel anonymization techniques to be
quickly evaluated. It uses machine learning (decision forests) to matching
pairs of nodes in disparate anonymized sub-graphs. The technique uncovers
artefacts and invariants of any black-box anonymization scheme from a small set
of examples. Despite a high degree of automation, classification succeeds with
significant true positive rates even when small false positive rates are
sought. Our evaluation uses publicly available real world datasets to study the
performance of our approach against real-world anonymization strategies, namely
the schemes used to protect datasets of The Data for Development (D4D)
Challenge. We show that the technique is effective even when only small numbers
of samples are used for training. Further, since it detects weaknesses in the
black-box anonymization scheme it can re-identify nodes in one social network
when trained on another.Comment: 12 page
On some further properties of nonzero-sum diffential games
Optimality principle and open loop-closed loop control relations in nonzero-sum differential game
Buoyancy and g-modes in young superfluid neutron stars
We consider the local dynamics of a realistic neutron star core, including
composition gradients, superfluidity and thermal effects. The main focus is on
the gravity g-modes, which are supported by composition stratification and
thermal gradients. We derive the equations that govern this problem in full
detail, paying particular attention to the input that needs to be provided
through the equation of state and distinguishing between normal and superfluid
regions. The analysis highlights a number of key issues that should be kept in
mind whenever equation of state data is compiled from nuclear physics for use
in neutron star calculations. We provide explicit results for a particular
stellar model and a specific nucleonic equation of state, making use of cooling
simulations to show how the local wave spectrum evolves as the star ages. Our
results show that the composition gradient is effectively dominated by the
muons whenever they are present. When the star cools below the superfluid
transition, the support for g-modes at lower densities (where there are no
muons) is entirely thermal. We confirm the recent suggestion that the g-modes
in this region may be unstable, but our results indicate that this instability
will be weak and would only be present for a brief period of the star's life.
Our analysis accounts for the presence of thermal excitations encoded in
entrainment between the entropy and the superfluid component. Finally, we
discuss the complete spectrum, including the normal sound waves and, in
superfluid regions, the second sound.Comment: 29 pages, 9 figures, submitted to MNRA
Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3
We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS
J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II
telescope, covering the rest-frame spectral regions surrounding the C IV 1549
and Mg II 2800 emission lines. The iron emission blend at rest wavelength
2900-3000 A is clearly detected and its strength appears nearly
indistinguishable from that of typical quasars at lower redshifts. The Fe II /
Mg II ratio is also similar to values found for lower-redshift quasars,
demonstrating that there is no strong evolution in Fe/alpha broad-line emission
ratios even out to z=6.4. In the context of current models for iron enrichment
from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at
z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to
estimate the black hole mass from the widths of the C IV and Mg II emission
lines and the ultraviolet continuum luminosity. The derived mass is in the
range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3
due to the intrinsic scatter in the scaling relations. This result is in
agreement with the previous mass estimate of 3x10^9 solar masses by Willott,
McLure, & Jarvis, and supports their conclusion that the quasar is radiating
close to its Eddington luminosity.Comment: To appear in ApJ Letter
Intermediate-mass Black Holes in Galactic Nuclei
We present the first homogeneous sample of intermediate-mass black hole
candidates in active galactic nuclei. Starting with broad-line active nuclei
from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling
relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 -
10^6 solar masses. In contrast to the local active galaxy population, the host
galaxies are ~1 mag fainter than M* and thus are probably late-type systems.
The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the
bolometric luminosities are close to the Eddington limit. The spectral
properties of the sample are compared to the related class of objects known as
narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as
observational analogues of primordial black holes, contributors to the
integrated signal for future gravitational wave experiments, and as a valuable
tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes,
Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th.
Storchi Bergmann, L.C. Ho, H.R. Schmit
Atmospheres and radiating surfaces of neutron stars with strong magnetic fields
We review the current status of the theory of thermal emission from the
surface layers of neutron stars with strong magnetic fields G, including formation of the spectrum in a partially ionized
atmosphere and at a condensed surface. In particular, we describe recent
progress in modeling partially ionized atmospheres of central compact objects
in supernova remnants, which may have moderately strong fields G. Special attention is given to polarization of thermal
radiation emitted by a neutron star surface. Finally, we briefly describe
applications of the theory to observations of thermally emitting isolated
neutron stars.Comment: 27 pages, 5 figures, invited review at the conference "The Modern
Physics of Compact Stars 2015" (Yerevan, Armenia, Sept. 30 - Oct. 3, 2015),
edited by R. Avagyan, A. Saharian, and A. Sedrakian. In v.2, a citation
(Ref.114) is correcte
Opacities and spectra of hydrogen atmospheres of moderately magnetized neutron stars
There is observational evidence that central compact objects (CCOs) in
supernova remnants have moderately strong magnetic fields G.
Meanwhile, available models of partially ionized hydrogen atmospheres of
neutron stars with strong magnetic fields are restricted to
G. We extend the equation of state and radiative opacities, presented in
previous papers for 10^{12}\mbox{ G}\lesssim B \lesssim 10^{15} G, to weaker
fields. An equation of state and radiative opacities for a partially ionized
hydrogen plasma are obtained at magnetic fields , temperatures , and
densities typical for atmospheres of CCOs and other isolated neutron
stars with moderately strong magnetic fields. The first- and second-order
thermodynamic functions, monochromatic radiative opacities, and Rosseland mean
opacities are calculated and tabulated, taking account of partial ionization,
for 3\times10^{10}\mbox{ G}\lesssim B\lesssim 10^{12} G, K K, and a wide range of densities. Atmosphere models and spectra
are calculated to verify the applicability of the results and to determine the
range of magnetic fields and effective temperatures where the incomplete
ionization of the hydrogen plasma is important.Comment: 11 pages, 7 figures, accepted for publication in A&
- …