39 research outputs found

    GlaciStore: understanding Late Cenozoic glaciation and basin processes for the development of secure large scale offshore CO2 storage (North Sea).

    Get PDF
    The sedimentary strata of the North Sea Basin (NSB) record the glacial and interglacial history of environmental change in the Northern Hemisphere, and are a proposed location for the engineered storage of carbon dioxide (CO2) captured from power plant and industrial sources to reduce greenhouse gas emissions. These aspects interact in the geomechanical and fluid flow domain, as ice sheet dynamics change the properties of potential seal and reservoir rocks that are the prospective geological storage strata for much of Europe’s captured CO2. The central part of the NSB preserves a unique history of the depositional record spanning at least the last 3 Ma, which also forms the overburden and uppermost seal to the underlying CO2 reservoirs. There is good evidence that these ice sheets created strong feedback loops that subsequently affected the evolution of the Quaternary climate system through complex ocean-atmosphere-cryosphere linkages

    NE Atlantic continental slope stability from a numerical modeling perspective

    Get PDF
    Trough mouth fans are environments characterized by high sediment supply during glacial stages and the occurrence of large-scale instabilities. The geological record indicates that several of these environments have failed repeatedly resulting in large submarine landslides. The roles of sedimentation rate, weak layers, glacial loading and unloading as well as seismic activity on triggering megaslides in trough-mouth-fan systems is still unclear. A better understanding of the preconditioning factors, triggers and consequences of these landslides is crucial due to the hazard they pose to coastal communities and offshore industries. In this paper, we focus on the North Sea Trough Mouth Fan, which is the result of massive glacial sediment input delivered to the shelf edge through the Norwegian Channel, southeast Nordic Seas margin. The Tampen Slide, one of several large paleo-landslides that have happened within the North Sea Trough Mouth Fan, took place at c. 130 ka (end of MIS 6), and removed an estimated 1800 km3 of sediment. Here, we use boundary conditions from the Tampen Slide and 2D Finite Element Modeling (Abaqus software from Simulia) to evaluate the effects of variations in sedimentation rates as well as sediment properties on the generation of excess pore pressure, fluid flow, and slope stability along the axis of the trough-mouth-fan system. The model domain, 40 km in length and 2 km in height, is dominated by glacigenic debris flows and glacimarine sediment deposits. We use geotechnical data measured on samples of glacigenic and glacimarine sediment deposits from the nearby Ormen Lange gas field area to constrain the model. We evaluate the stability of the slope under various scenarios, including constant sediment loading, episodic changes in sedimentation rates and abrupt pulses in sediment delivery for a 61 kyr period (MIS 6). The models show that increased sedimentation rates during glacial stages do not generate sufficient excess pore pressure to set off a landslide. Furthermore, the simulated overpressures for the different sedimentation scenarios do not significantly differ at the end of the model runs. The results also highlight the importance of a basal glacimarine sediment layer underneath the rapidly-deposited sediments for the build-up of overpressure. Consequently, this glacimarine sediment layer has the inherited potential to act as a weak layer facilitating instability. However, as overpressure due to sediment deposition alone does not result in slope failure, we couple the preconditioned slope with earthquake ground shaking. Based on attenuation models, an earthquake of approximately M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the landslide. Therefore, we suggest glacial sedimentation and a glacimarine sediment layer to represent preconditioning factors, and seismic shaking as the final trigger mechanism for the Tampen Slide, i.e. similar to the situation that lead to the development of the Storegga Slide in the same area.NE Atlantic continental slope stability from a numerical modeling perspectiveacceptedVersio

    Episodic Cenozoic tectonism and the development of the NW European 'passive' continental margin

    No full text
    The North Atlantic margins are archetypally passive, yet they have experienced post-rift vertical movements of up to kilometre scale. The Cenozoic history of such movements along the NW European margin, from Ireland to mid-Norway, is examined by integrating published analyses of uplift and subsidence with higher resolution tectono-stratigraphic indicators of relative movements (including results from the STRATAGEM project). Three episodes of epeirogenic movement are identified, in the early, mid- and late Cenozoic, distinct from at least one phase of compressive tectonism. Two forms of epeirogenic movement are recognised, referred to as tilting (coeval subsidence and uplift, rotations <1° over distances of 100s of Kilometres) and sagging (strongly differential subsidence, rotations up to 4° over distances <100 km). Each epeirogenic episode involved relatively rapid (<10 Ma) km-scale tectonic movements that drove major changes in patterns of sedimentation to find expression in regional unconformity-bounded stratigraphic units. Early Cenozoic tilting (late Paleocene to early Eocene, c. 60–50 Ma) caused the basinward progradation of shelf-slope wedges from elongate uplifts along the inner continental margin and from offshore highs. Mid-Cenozoic sagging (late Eocene to early Oligocene, c. 35–25 Ma) ended wedge progradation and caused the onset of contourite deposition in deep-water basins. Late Cenozoic tilting (early Pliocene to present, <4±0.5 Ma) again caused the basinward progradation of shelf-slope wedges, from uplifts along the inner margin (including broad dome-like features) and from offshore highs. The early, mid- and late Cenozoic epeirogenic episodes coincided with Atlantic plate reorganisations, but the observed km-scale tectonic movements are too large to be accounted for as flexural deflections due to intra-plate stress variations. Mantle–lithosphere interactions are implied, but the succession of epeirogenic episodes, of differing form, are difficult to reconcile with the various syn-to post-rift mechanisms of permanent and/or transient movements proposed in the hypothetical context of a plume beneath Iceland. The epeirogenic movements can be explained as dynamic topographic responses to changing forms of small-scale convective flow in the upper mantle: tilting as coeval upwelling and downwelling above an edge-driven convection cell, sagging as a loss of dynamic support above a former upwelling. The inferred Cenozoic succession of epeirogenic tilting, sagging and tilting is proposed to record the episodic evolution of upper mantle convection during ocean opening, a process that may also be the underlying cause of plate reorganisations. The postulated episodes of flow reorganisation in the NE Atlantic region have testable implications for epeirogenic movements along the adjacent oceanic spreading ridge and conjugate continental margin, as well as on other Atlantic-type ‘passive’ margin

    NE Atlantic continental slope stability from a numerical modeling perspective

    Get PDF
    Trough mouth fans are environments characterized by high sediment supply during glacial stages and the occurrence of large-scale instabilities. The geological record indicates that several of these environments have failed repeatedly resulting in large submarine landslides. The roles of sedimentation rate, weak layers, glacial loading and unloading as well as seismic activity on triggering megaslides in trough-mouth-fan systems is still unclear. A better understanding of the preconditioning factors, triggers and consequences of these landslides is crucial due to the hazard they pose to coastal communities and offshore industries. In this paper, we focus on the North Sea Trough Mouth Fan, which is the result of massive glacial sediment input delivered to the shelf edge through the Norwegian Channel, southeast Nordic Seas margin. The Tampen Slide, one of several large paleo-landslides that have happened within the North Sea Trough Mouth Fan, took place at c. 130 ka (end of MIS 6), and removed an estimated 1800 km3 of sediment. Here, we use boundary conditions from the Tampen Slide and 2D Finite Element Modeling (Abaqus software from Simulia) to evaluate the effects of variations in sedimentation rates as well as sediment properties on the generation of excess pore pressure, fluid flow, and slope stability along the axis of the trough-mouth-fan system. The model domain, 40 km in length and 2 km in height, is dominated by glacigenic debris flows and glacimarine sediment deposits. We use geotechnical data measured on samples of glacigenic and glacimarine sediment deposits from the nearby Ormen Lange gas field area to constrain the model. We evaluate the stability of the slope under various scenarios, including constant sediment loading, episodic changes in sedimentation rates and abrupt pulses in sediment delivery for a 61 kyr period (MIS 6). The models show that increased sedimentation rates during glacial stages do not generate sufficient excess pore pressure to set off a landslide. Furthermore, the simulated overpressures for the different sedimentation scenarios do not significantly differ at the end of the model runs. The results also highlight the importance of a basal glacimarine sediment layer underneath the rapidly-deposited sediments for the build-up of overpressure. Consequently, this glacimarine sediment layer has the inherited potential to act as a weak layer facilitating instability. However, as overpressure due to sediment deposition alone does not result in slope failure, we couple the preconditioned slope with earthquake ground shaking. Based on attenuation models, an earthquake of approximately M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the landslide. Therefore, we suggest glacial sedimentation and a glacimarine sediment layer to represent preconditioning factors, and seismic shaking as the final trigger mechanism for the Tampen Slide, i.e. similar to the situation that lead to the development of the Storegga Slide in the same area

    NE Atlantic continental slope stability from a numerical modeling perspective

    No full text
    Trough mouth fans are environments characterized by high sediment supply during glacial stages and the occurrence of large-scale instabilities. The geological record indicates that several of these environments have failed repeatedly resulting in large submarine landslides. The roles of sedimentation rate, weak layers, glacial loading and unloading as well as seismic activity on triggering megaslides in trough-mouth-fan systems is still unclear. A better understanding of the preconditioning factors, triggers and consequences of these landslides is crucial due to the hazard they pose to coastal communities and offshore industries. In this paper, we focus on the North Sea Trough Mouth Fan, which is the result of massive glacial sediment input delivered to the shelf edge through the Norwegian Channel, southeast Nordic Seas margin. The Tampen Slide, one of several large paleo-landslides that have happened within the North Sea Trough Mouth Fan, took place at c. 130 ka (end of MIS 6), and removed an estimated 1800 km3 of sediment. Here, we use boundary conditions from the Tampen Slide and 2D Finite Element Modeling (Abaqus software from Simulia) to evaluate the effects of variations in sedimentation rates as well as sediment properties on the generation of excess pore pressure, fluid flow, and slope stability along the axis of the trough-mouth-fan system. The model domain, 40 km in length and 2 km in height, is dominated by glacigenic debris flows and glacimarine sediment deposits. We use geotechnical data measured on samples of glacigenic and glacimarine sediment deposits from the nearby Ormen Lange gas field area to constrain the model. We evaluate the stability of the slope under various scenarios, including constant sediment loading, episodic changes in sedimentation rates and abrupt pulses in sediment delivery for a 61 kyr period (MIS 6). The models show that increased sedimentation rates during glacial stages do not generate sufficient excess pore pressure to set off a landslide. Furthermore, the simulated overpressures for the different sedimentation scenarios do not significantly differ at the end of the model runs. The results also highlight the importance of a basal glacimarine sediment layer underneath the rapidly-deposited sediments for the build-up of overpressure. Consequently, this glacimarine sediment layer has the inherited potential to act as a weak layer facilitating instability. However, as overpressure due to sediment deposition alone does not result in slope failure, we couple the preconditioned slope with earthquake ground shaking. Based on attenuation models, an earthquake of approximately M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the landslide. Therefore, we suggest glacial sedimentation and a glacimarine sediment layer to represent preconditioning factors, and seismic shaking as the final trigger mechanism for the Tampen Slide, i.e. similar to the situation that lead to the development of the Storegga Slide in the same area
    corecore