53 research outputs found

    Cerebral malaria: insights from host-parasite protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria is a form of human malaria wherein <it>Plasmodium falciparum</it>-infected red blood cells adhere to the blood capillaries in the brain, potentially leading to coma and death. Interactions between parasite and host proteins are important in understanding the pathogenesis of this deadly form of malaria. It is, therefore, necessary to study available protein-protein interactions to identify lesser known interactions that could throw light on key events of cerebral malaria.</p> <p>Methods</p> <p>Sequestration, haemostasis dysfunction, systemic inflammation and neuronal damage are key processes of cerebral malaria. Key events were identified from literature as being crucial to these processes. An integrated interactome was created using available experimental and predicted datasets as well as from literature. Interactions from this interactome were filtered based on Gene Ontology and tissue-specific annotations, and further analysed for relevance to the key events.</p> <p>Results</p> <p>PfEMP1 presentation, platelet activation and astrocyte dysfunction were identified as the key events influencing the disease. 48896 host-parasite along with other host-parasite, host-host and parasite-parasite protein-protein interactions obtained from a disease-specific corpus were combined to form an integrated interactome. Filtering of the interactome resulted in five host-parasite PPI, six parasite-parasite and two host-host PPI. The analysis of these interactions revealed the potential significance of apolipoproteins and temperature/Hsp expression on efficient PfEMP1 presentation; role of MSP-1 in platelet activation; effect of parasite proteins in TGF-β regulation and the role of albumin in astrocyte dysfunction.</p> <p>Conclusions</p> <p>This work links key host-parasite, parasite-parasite and host-host protein-protein interactions to key processes of cerebral malaria and generates hypotheses for disease pathogenesis based on a filtered interaction dataset. These hypotheses provide novel and significant insights to cerebral malaria.</p

    Activin signaling as an emerging target for therapeutic interventions

    Get PDF
    After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-β (TGF-β) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-β, Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-β ligands, and control the signaling and availability of ligands

    Extracellular Hsp90 and TGFP regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model

    Get PDF
    Tumour metastasis remains the major cause of death in cancer patients and, to date, the mechanism and signalling pathways governing this process are not completely understood. The TGF-ß pathway is the most commonly mutated pathway in cancer, however its role in cancer progression is controversial as it can function as both a promoter and a suppressor of metastasis. Although previous studies have suggested a role for the molecular chaperone Hsp90 in regulating the TGF-ß pathway, the level at which this occurs as well as the consequences in terms of colon cancer metastasis are unknown

    Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin

    Get PDF
    Background: Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berrycolor and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of thisripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages ofripening between 22 and 37 \ub0Brix was assessed using whole-genome micorarrays.Results: The transcript abundance of approximately 18,000 genes changed with \ub0Brix and tissue type. There were alarge number of changes in many gene ontology (GO) categories involving metabolism, signaling and abioticstress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolismand pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with \ub0Brix revealed that therewere statistically significantly higher abundances of transcripts changing with \ub0Brix in the skin that were involved inethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimalfruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamilyof transcription factors changed during these developmental stages. The transcript abundance of a unique clade ofERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene,senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcriptabundance of important transcription factors involved in fruit ripening was also higher in the skin.Conclusions: A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berriesrevealed that these berries went through massive transcriptional changes in gene ontology categories involvingchemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcriptabundance of genes involved in the ethylene signaling pathway of this nonclimacteric fruit were statisticallysignificant in the late stages of ripening when the production of transcripts for important flavor and aroma compoundswere at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role infruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit

    The use of hyperoxia to induce chronic mild oxidative stress

    No full text
    The retinal pigment epithelial (RPE) cell is exposed to chronic oxidative stress in part from exposure to high partial pressures of oxygen and in part, from its high level of oxygen metabolism which generates large amounts of reactive oxygen intermediates (ROI) An alternative and perhaps more applicable approach to studying the effects of oxidative stress on RPE cells would apply chronic and lower levels of oxidative stress than the acute levels resulting from chemical oxidants. Recently, von Zglinicki et al. used chronic hyperoxia treatment to induce long term oxidative stress on lung fibroblasts METHODS Cell culture: The RPE340 cell line from one globe of a 1-year-old trauma victim was propagated as previously described Methods: RPE340 cells and WI38 lung fibroblasts were grown in normal oxygen (20% O 2 ) and hyperoxia (40% O 2 or 60% O 2 ). After cell viability was examined, the levels of reactive oxygen intermediates (ROI) by flow cytometry and heme oxygenase-1 (HO-1) mRNA by northern analysis were measured as markers of oxidative stress in both cell types. Proliferative ability and gene expression pattern of growth factors were studied to demonstrate the phenotypic changes induced by mild oxidative stress upon these cells. Results: While decreased by 60% O 2 , 40% O 2 did not affect viability in both cell types, ROI production and HO-1 mRNA expression were elevated in hyperoxia compared to controls, but were inhibited with the antioxidant dehydro-ascorbic acid (DHA). The proliferation of cells by hyperoxia was inhibited in both cell types. The expression of growth factors induced by hyperoxia was cell type dependent. Fibroblast growth factor-2 mRNA was unchanged in RPE cells, but was increased in fibroblasts. Transforming growth factor-β2 was decreased in RPE cells, but unchanged in fibroblasts. Vascular endothelial growth factor was downregulated in RPE cells, while upregulated in fibroblasts. Connective tissue growth factor was decreased in RPE cells, but was unchanged in fibroblasts. Conclusions: The results demonstrate that hyperoxia induces mild oxidative stress which alters the phenotype of cells in a cell type specific manner
    corecore