325 research outputs found
Ultrasensitive force detection with a nanotube mechanical resonator
Since the advent of atomic force microscopy, mechanical resonators have been
used to study a wide variety of phenomena, such as the dynamics of individual
electron spins, persistent currents in normal metal rings, and the Casimir
force. Key to these experiments is the ability to measure weak forces. Here, we
report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a
temperature of 1.2 K using a resonator made of a carbon nanotube. An
ultra-sensitive method based on cross-correlated electrical noise measurements,
in combination with parametric downconversion, is used to detect the
low-amplitude vibrations of the nanotube induced by weak forces. The force
sensitivity is quantified by applying a known capacitive force. This detection
method also allows us to measure the Brownian vibrations of the nanotube down
to cryogenic temperatures. Force sensing with nanotube resonators offers new
opportunities for detecting and manipulating individual nuclear spins as well
as for magnetometry measurements.Comment: Early version. To be published in Nature Nanotechnolog
Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical
resonators. They hold promise for various scientific and technological
applications, including sensing of mass, force, and charge, as well as the
study of quantum phenomena at the mesoscopic scale. Here, we have discovered
that the dynamics of nanotube and graphene resonators is in fact highly exotic.
We propose an unprecedented scenario where mechanical dissipation is entirely
determined by nonlinear damping. As a striking consequence, the quality factor
Q strongly depends on the amplitude of the motion. This scenario is radically
different from that of other resonators, whose dissipation is dominated by a
linear damping term. We believe that the difference stems from the reduced
dimensionality of carbon nanotubes and graphene. Besides, we exploit the
nonlinear nature of the damping to improve the figure of merit of
nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio
Doppler velocimetry of spin propagation in a two-dimensional electron gas
Controlling the flow of electrons by manipulation of their spin is a key to
the development of spin-based electronics. While recent demonstrations of
electrical-gate control in spin-transistor configurations show great promise,
operation at room temperature remains elusive. Further progress requires a
deeper understanding of the propagation of spin polarization, particularly in
the high mobility semiconductors used for devices. Here we report the
application of Doppler velocimetry to resolve the motion of spin-polarized
electrons in GaAs quantum wells driven by a drifting Fermi sea. We find that
the spin mobility tracks the high electron mobility precisely as a function of
T. However, we also observe that the coherent precession of spins driven by
spin-orbit interaction, which is essential for the operation of a broad class
of spin logic devices, breaks down at temperatures above 150 K for reasons that
are not understood theoretically
Measurements of the Correlation Function of a Microwave Frequency Single Photon Source
At optical frequencies the radiation produced by a source, such as a laser, a
black body or a single photon source, is frequently characterized by analyzing
the temporal correlations of emitted photons using single photon counters. At
microwave frequencies, however, there are no efficient single photon counters
yet. Instead, well developed linear amplifiers allow for efficient measurement
of the amplitude of an electromagnetic field. Here, we demonstrate how the
properties of a microwave single photon source can be characterized using
correlation measurements of the emitted radiation with such detectors. We also
demonstrate the cooling of a thermal field stored in a cavity, an effect which
we detect using a cross-correlation measurement of the radiation emitted at the
two ends of the cavity.Comment: 5 pages, 4 figure
Comments on Non-holomorphic Modular Forms and Non-compact Superconformal Field Theories
We extend our previous work arXiv:1012.5721 [hep-th] on the non-compact N=2
SCFT_2 defined as the supersymmetric SL(2,R)/U(1)-gauged WZW model. Starting
from path-integral calculations of torus partition functions of both the
axial-type (`cigar') and the vector-type (`trumpet') models, we study general
models of the Z_M-orbifolds and M-fold covers with an arbitrary integer M. We
then extract contributions of the degenerate representations (`discrete
characters') in such a way that good modular properties are preserved. The
`modular completion' of the extended discrete characters introduced in
arXiv:1012.5721 [hep-th] are found to play a central role as suitable building
blocks in every model of orbifolds or covering spaces. We further examine a
large M-limit (the `continuum limit'), which `deconstructs' the spectral flow
orbits while keeping a suitable modular behavior. The discrete part of
partition function as well as the elliptic genus is then expanded by the
modular completions of irreducible discrete characters, which are parameterized
by both continuous and discrete quantum numbers modular transformed in a mixed
way. This limit is naturally identified with the universal cover of trumpet
model. We finally discuss a classification of general modular invariants based
on the modular completions of irreducible characters constructed above.Comment: 1+40 pages, no figure; v2 some points are clarified with respect to
the `continuum limit', typos corrected, to appear in JHEP; v3 footnotes added
in pages 18, 23 for the relation with arXiv:1407.7721[hep-th
Photo-designed terahertz devices
Technologies are being developed to manipulate electromagnetic waves using artificially structured materials such as photonic crystals and metamaterials, with the goal of creating primary optical devices. For example, artificial metallic periodic structures show potential for the construction of devices operating in the terahertz frequency regime. Here we demonstrate the fabrication of photo-designed terahertz devices that enable the real-time, wide-range frequency modulation of terahertz electromagnetic waves. These devices are comprised of a photo-induced, planar periodic-conductive structure formed by the irradiation of a silicon surface using a spatially modulated, femtosecond optical pulsed laser. We also show that the modulation frequency can be tuned by the structural periodicity, but is hardly affected by the excitation power of the optical pump pulse. We expect that our findings will pave the way for the construction of all-optical compact operating devices, such as optical integrated circuits, thereby eliminating the need for materials fabrication processes
CDR2 antigen and Yo antibodies
Paraneoplastic cerebellar degeneration (PCD) is often associated with Yo antibodies that are directed against human cerebellar degeneration-related protein 2 (CDR2). Such antibodies may also be found in ovarian cancer patients without PCD. We studied if there was an association between Yo antibody production and differences in CDR2 cDNA sequence, mRNA or CDR2 expression in ovarian cancers. We found similar CDR2 cDNA sequence, mRNA and protein levels in primary ovarian cancers, with or without associated Yo antibodies. CDR2 was also present in other cancers, as well as in normal ovary tissue. The results suggest that Yo antibodies are not only related to the expression of CDR2 alone, but also to immune dysregulation
PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina
Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50 ng/ml PEDF alone or in combination with 50 ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF
Parent of origin genetic effects on methylation in humans are common and influence complex trait variation
Parent-of-origin effects (POE) are observed when there are different effects from alleles inherited from the two parents on phenotypic measures. Here, Zeng et al. study POE on DNA methylation in 5,101 individuals and identify genetic variants that associate with methylation variation via POE and their potential phenotypic consequences
- …