16 research outputs found

    Methane and carbon dioxide exchange in the tropical savannas of northern Australia: the role of termites

    Get PDF
    © 2011 Dr. Hizbullah JamaliTermites are one of the most uncertain components of global CH4 budget mainly because of the lack of long-term field based studies from different biogeographical regions. This thesis investigated the exchange of CH4 and CO2 between termites and atmosphere, and between soil and atmosphere in the tropical savannas of northern Australia. Diurnal variations in CH4 fluxes were measured from mounds of Microcerotermes nervosus, Microcerotermes serratus and Tumulitermes pastinator every four hours over a 24 hour period. There was large diurnal variation in mound CH4 fluxes caused by diurnal temperature patterns. Mound CH4 fluxes measured between 10:00 and 12:00 hours best represented the mean daily flux. Seasonal measurements of mound CH4 fluxes were up to 25-fold greater in the wet season than the dry season and always greater in the wet season for all investigated species. Detailed studies in M. nervosus revealed that these differences were not associated with changes in environmental pattern but seasonal changes in termite mound population size. The magnitude of diurnal and seasonal variations in mound CH4 fluxes measured in this study suggest that estimates of global CH4 emissions from termites that do not account for such variations will contain larger errors and uncertainty. The contribution of mound-building, hypogeal and wood-nesting termites to the CH4 balance was estimated for a savanna woodland at Howard Springs near Darwin. Methane fluxes were measured from termite mounds and from the soil - from which CH4 fluxes from hypogeal termites were estimated. Methane fluxes from wood-nesting termites were estimated based on known species abundance. Termites were an annual CH4 source of +0.24 kg CH4-C ha-1 y-1 and soils a CH4 sink of -1.14 kg CH4-C ha-1 y-1. Thus, termites offset 21% of CH4 consumed by soil methanotrophs, but overall the savanna ecosystem was a sink for CH4 of -0.90 kg CH4-C ha-1 y-1. Two indirect methods were tested to predict CH4 and CO2 fluxes from termite mounds. The first predicted mound CH4 fluxes from ‘easier-to-measure’ mound CO2 fluxes. The second predicted CH4 and CO2 fluxes from termite mounds based on the relationship between internal mound concentrations and external mound flux. For both indirect methods the prediction errors were small when calculated separately for each species, whereas, a generic relationship or predictions between species resulted in large errors, probably associated with different mound structures for different species. This study shows that CO2 emissions from termite mounds are up to two orders of magnitude greater than CH4 emissions, when expressed in CO2-equivalents. There was large variation in both CH4 and CO2 fluxes from termite mounds and soil among different sites which suggests caution when scaling up fluxes from the plot or site scale to a regional or greater scale. This study filled important knowledge gaps in the ecosystem ecology of termites and Australian savannas. This study establishes North Australian savannas as one of the few biogeographical regions where the contribution of termites to ecosystem CH4 exchange has been investigated. The study highlights the difficulties associated with predicting CH4 flux from termites on a biome scale, which are caused by the high temporal and species-specific variability in flux. Future studies will have to consider these issues in order to reduce the uncertainty of the role of termites in the global CH4 budget

    Mitigation of N2O emissions from surface-irrigated cropping systems using water management and the nitrification inhibitor DMPP

    No full text
    Soils under irrigated agriculture are a significant source of nitrous oxide (N2O) owing to high inputs of nitrogen (N) fertiliser and water. This study investigated the potential for N2O mitigation by manipulating the soil moisture deficit through irrigation scheduling in combination with, and in comparison to, using the nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP). Lysimeter cores planted with wheat were fitted with automated chambers for continuous measurements of N2O fluxes. Treatments included conventional irrigation (CONV), reduced deficit irrigation (RED), CONV-DMPP and RED-DMPP. The total seasonal volume of irrigation water applied was constant for all treatments but the timing and quantity in individual irrigation applications varied among treatments. 15N-labelled urea was used to track the source of N2O emissions and plant N uptake. The majority of N2O emissions occurred immediately after irrigations began on 1 September 2014. Applying RED and DMPP individually slightly decreased N2O emissions but when applied in combination (RED-DMPP) the greatest reductions in N2O emissions were observed. There was no effect of treatments on plant N uptake, 15N recovery or yield possibly because the system was not N limited. Half of the plant N and 53% to 87% of N2O was derived from non-fertiliser sources in soil, highlighting the opportunity to further exploit this valuable N pool

    Effect of soil texture and wheat plants on N2O fluxes: A lysimeter study

    No full text
    Agricultural soils are a major source of nitrous oxide (N2O) emissions and an understanding of factors regulating such emissions across contrasting soil types is critical for improved estimation through modelling and mitigation of N2O. In this study we investigated the role of soil texture and its interaction with plants in regulating the N2O fluxes in agricultural systems. A measurement system that combined weighing lysimeters with automated chambers was used to directly compare continuously measured surface N2O fluxes, leaching losses of water and nitrogen and evapotranspiration in three contrasting soils types of the Riverine Plain, NSW, Australia. The soils comprised a deep sand, a loam and a clay loam with and without the presence of wheat plants. All soils were under the same fertilizer management and irrigation was applied according to plant water requirements. In fallow soils, texture significantly affected N2O emissions in the order clay loam > loam > sand. However, when planted, the difference in N2O emissions among the three soils types became less pronounced. Nitrous oxide emissions were 6.2 and 2.4 times higher from fallow clay loam and loam cores, respectively, compared with cores planted with wheat. This is considered to be due to plant uptake of water and nitrogen which resulted in reduced amounts of soil water and available nitrogen, and therefore less favourable soil conditions for denitrification. The effect of plants on N2O emissions was not apparent in the coarse textured sandy soil probably because of aerobic soil conditions, likely caused by low water holding capacity and rapid drainage irrespective of plant presence resulting in reduced denitrification activity. More than 90% of N2O emissions were derived from denitrification in the fine-textured clay loam-determined for a two week period using K15NO3 fertilizer. The proportion of N2O that was not derived from K15NO3 was higher in the coarse-textured sand and loam, which may have been derived from soil N through nitrification or denitrification of mineralized N. Water filled pore space was a poorer predictor of N2O emissions compared with volumetric water content because of variable bulk density among soil types. The data may better inform the calibration of greenhouse gas prediction models as soil texture is one of the primary factors that explain spatial variation in N2O emissions by regulating soil oxygen. Defining the significance of N2O emissions between planted and fallow soils may enable improved yield scaled N2O emission assessment, water and nitrogen scheduling in the pre-watering phase during early crop establishment and within rotations of irrigated arable cropping systems

    A new probabilistic forecasting model for canopy temperature with consideration of periodicity and parameter variation

    No full text
    Continuous measurement of canopy temperature is an important indicator of plant water status of crops and the ability to predict canopy temperature will assist in the implementation of this technology for guiding crop irrigation scheduling. By noting that canopy temperature is related to its environmental weather variables which change over time of the day and have different effect or contribution to canopy temperature, this paper presents a probabilistic model to predict canopy temperature by using weather variables which can be obtained from weather model predictions. Unlike the existing models which consider only the linear correlation, the proposed model allows the model parameters to vary according to a periodic function which is designed to capture the variation over the time of the day. The continuity of parameter changes is guaranteed by varying the model parameters periodically and smoothly. Two case studies using cotton experiments from Australia and the United States are conducted to compare the model performance with the existing published models. Using the predictions of canopy temperature an index of crop stress is also predicted in order to evaluate its influence in the irrigation scheduling. Results show that the proposed model is superior to the existing published models in its ability to predict canopy temperature into the future and has utility in assessing when crop stress will occur, to assist with irrigation scheduling. Further evaluations suggest that the air temperature is a dominate weather variable for forecasting canopy temperature but the inclusion of the other weather variables still improves the forecast
    corecore