368 research outputs found

    Anthropogenic versus fish‐derived nutrient effects on seagrass community structure and function

    Full text link
    Humans are altering nutrient dynamics through myriad pathways globally. Concurrent with the addition of nutrients via municipal, industrial, and agricultural sources, widespread consumer exploitation is changing consumer‐mediated nutrient dynamics drastically. Thus, altered nutrient dynamics can occur through changes in the supply of multiple nutrients, as well as through changes in the sources of these nutrients. Seagrass ecosystems are heavily impacted by human activities, with highly altered nutrient dynamics from multiple causes. We simulate scenarios of altered nutrient supply and ratios, nitrogen:phosphorus (N:P), from two nutrient sources in seagrass ecosystems: anthropogenic fertilizer and fish excretion. In doing so we tested expectations rooted in ecological theory that suggest the importance of resource dynamics for predicting primary producer dynamics. Ecosystem functions were strongly altered by artificial fertilizer (e.g., seagrass growth increased by as much as 140%), whereas plant/algae community structure was most affected by fish‐mediated nutrients or the interaction of both treatments (e.g., evenness increased by ~140% under conditions of low fish nutrients and high anthropogenic nutrients). Interactions between the nutrient sources were found for only two of six response variables, and the ratio of nutrient supply was the best predictor for only one response. These findings show that seagrass structure and function are well predicted by supply of a single nutrient (either N or P). Importantly, no single nutrient best explained the majority of responses—measures of community structure were best explained by the primary limiting nutrient to this system (P), whereas measures of growth and density of the dominant producer in the system were best explained by N. Thus, while our findings support aspects of theoretical expectations, the complexity of producer community responses belies broad generalities, underscoring the need to manage for multiple simultaneous nutrients in these imperiled coastal ecosystems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/1/ecy2388_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/2/ecy2388-sup-0003-AppendixS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/3/ecy2388-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/4/ecy2388-sup-0006-AppendixS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/5/ecy2388-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/6/ecy2388-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/7/ecy2388.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/8/ecy2388-sup-0004-AppendixS4.pd

    Rewiring coral: Anthropogenic nutrients shift diverse coral–symbiont nutrient and carbon interactions toward symbiotic algal dominance

    Full text link
    Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long‐term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral–symbiotic algal interactions changed under real‐world conditions that were a priori expected to be beneficial (fish‐mediated nutrients) and to be harmful, but non‐lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral–symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally “rewired” under anthropogenic nutrient regimes in ways that could increase corals’ susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.We provide a long‐term field experiment to test the implications of different nutrient sources, fish excretion and moderate levels of anthropogenic nutrients, for coral health and coral–symbiont interactions. Our study identifies a potentially novel "transition state" whereby despite maintaining high growth rates and creating no apparent negative external effects, anthropogenic nutrient enrichment drives coral–algal interactions to be dominated by the algal symbiont—that is, increased prominence of energy and nutrient flow from the algal symbiont under conditions of Fish + anthropogenic nutrients (NPK) in the figure. We hypothesize that this “rewiring” of the coral–symbiont interactions may render the coral more vulnerable to additional stressors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162733/2/gcb15230_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162733/1/gcb15230.pd

    Oral delivery of il-27 recombinant bacteria attenuates immune colitis in mice

    Get PDF
    BACKGROUND & AIMS: Treatment of inflammatory bowel disease (IBD) would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine IL27, which is actively synthesized in situ by the food-grade bacterium Lactococcuslactis (LL-IL-27), and tested its ability to reduce colitis in mice. METHODS: The 2 genes encoding mouse IL27 were synthesized with optimal codon usage for L lactis and joined with a linker; a signal sequence was added to allow for secretion of the product. The construct was introduced into L lactis. Colitis was induced via transfer of CD4(+)CD45RB(hi) T cells into Rag(−/−) mice to induce colitis; 7.5 weeks later, LL-IL-27 was administered to mice via gavage. Intestinal tissues were collected and analyzed. RESULTS: LL-IL-27 administration protected mice from T-cell transfer-induced enterocolitis and death. LL-IL-27 reduced disease activity scores, pathology features of large and small bowel, and levels of inflammatory cytokines in colonic tissue. LL-IL-27 also reduced numbers of CD4(+) and IL17(+) T cells in gut-associated lymphoid tissue. The effects of LL-IL-27 required production of IL10 by the transferred T cells. LL-IL-27 was more effective than either LL-IL-10 or systemic administration of recombinant IL27 in reducing colitis in mice. LL-IL-27 also reduced colitis in mice following administration of dextran sodium sulfate. CONCLUSIONS: L lactis engineered to express IL27 (LL-IL-27) reduces colitis in mice, by increasing production of IL10. Mucosal delivery of LL-IL-27 could be a more effective and safer therapy for IBD

    Interleukin-27 Is a Potential Rescue Therapy for Acute Severe Colitis Through Interleukin-10-Dependent, T-Cell-Independent Attenuation of Colonic Mucosal Innate Immune Responses

    Get PDF
    Background: If treatment with intravenous steroids fail, inflammatory bowel disease patients with acute severe colitis face systemic anti–tumor necrosis factor biologic rescue therapy or colectomy. Interleukin (IL)-27 is a cytokine with an immunosuppressive role in adaptive immune responses. However, the IL-27 receptor complex is also expressed on innate immune cells, and there is evidence that IL-27 can impact the function of innate cell subsets, although this particular functionality in vivo is not understood. Our aim was to define the efficacy of IL-27 in acute severe colitis and characterize novel IL-27–driven mechanisms of immunosuppression in the colonic mucosa. Methods: We assessed oral delivery of Lactococcus lactis expressing an IL-27 hyperkine on the innate immune response in vivo in a genetically intact, noninfective, acute murine colitis model induced by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid in SJL/J mice. Results: IL-27 attenuates acute severe colitis through the reduction of colonic mucosal neutrophil infiltrate associated with a decreased CXC chemokine gradient. This suppression was T cell independent and IL-10 dependent, initially featuring enhanced mucosal IL-10. IL-27 was associated with a reduction in colonic proinflammatory cytokines and induced a multifocal, strong, positive nuclear expression of phosphorylated STAT-1 in mucosal epithelial cells. Conclusion: We have defined novel mechanisms of IL-27 immunosuppression toward colonic innate immune responses in vivo. Mucosal delivery of IL-27 has translational potential as a novel therapeutic for inflammatory bowel disease, and it is a future mucosal directed rescue therapy in acute severe inflammatory bowel disease

    Mapping a beautiful voice : theoretical considerations

    Get PDF
    The prime purpose of this paper is to draw on a range of diverse literatures to clarify those elements thatare perceived to constitute a ‘beautiful’ sung performance. The text rehearses key findings from existingliteratures in order to determine the extent to which particular elements might appear the most salientfor an individual listener and also ‘quantifiable’ (in the sense of being open to empirical study). Thepaper concludes with a theoretical framework for the elements that are likely to construct and shape ourresponses to particular sung performances

    Density‐ and size‐dependent mortality in fish early life stages

    Get PDF
    The importance of survival and growth variations early in life for population dynamics depends on the degrees of compensatory density dependence and size dependence in survival at later life stages. Quantifying density‐ and size‐dependent mortality at different juvenile stages is therefore important to understand and potentially predict the recruitment to the population. We applied a statistical state‐space modelling approach to analyse time series of abundance and mean body size of larval and juvenile fish. The focus was to identify the importance of abundance and body size for growth and survival through successive larval and juvenile age intervals, and to quantify how the dynamics propagate through the early life to influence recruitment. We thus identified both relevant ages and mechanisms (i.e. density dependence and size dependence in survival and growth) linking recruitment variability to early life dynamics. The analysis was conducted on six economically and ecologically important fish populations from cold temperate and sub‐arctic marine ecosystems. Our results underscore the importance of size for survival early in life. The comparative analysis suggests that size‐dependent mortality and density‐dependent growth frequently occur at a transition from pelagic to demersal habitats, which may be linked to competition for suitable habitat. The generality of this hypothesis warrants testing in future research.publishedVersio

    Shelters and Their Use by Fishes on Fringing Coral Reefs

    Get PDF
    Coral reef fish density and species richness are often higher at sites with more structural complexity. This association may be due to greater availability of shelters, but surprisingly little is known about the size and density of shelters and their use by coral reef fishes. We quantified shelter availability and use by fishes for the first time on a Caribbean coral reef by counting all holes and overhangs with a minimum entrance diameter ≥3 cm in 30 quadrats (25 m2) on two fringing reefs in Barbados. Shelter size was highly variable, ranging from 42 cm3 to over 4,000,000 cm3, with many more small than large shelters. On average, there were 3.8 shelters m−2, with a median volume of 1,200 cm3 and a total volume of 52,000 cm3m−2. The number of fish per occupied shelter ranged from 1 to 35 individual fishes belonging to 66 species, with a median of 1. The proportion of shelters occupied and the number of occupants increased strongly with shelter size. Shelter density and total volume increased with substrate complexity, and this relationship varied among reef zones. The density of shelter-using fish was much more strongly predicted by shelter density and median size than by substrate complexity and increased linearly with shelter density, indicating that shelter availability is a limiting resource for some coral reef fishes. The results demonstrate the importance of large shelters for fish density and support the hypothesis that structural complexity is associated with fish abundance, at least in part, due to its association with shelter availability. This information can help identify critical habitat for coral reef fishes, predict the effects of reductions in structural complexity of natural reefs and improve the design of artificial reefs

    Health Care Provider Knowledge and Practices Regarding Folic Acid, United States, 2002–2003

    Get PDF
    Objective: To assess health care providers (HCP) knowledge and practices regarding folic acid (FA) use for neural tube defect (NTD) prevention. Methods: Two identical surveys were conducted among 611 obstetricians/gynecologists (OB/GYNs) and family/general physicians (FAM/GENs) (2002), and 500 physician assistants (PAs), nurse practitioners (NPs), certified nurse midwives (CNMs), and registered nurses (2003) to ascertain knowledge and practices regarding FA. For analysis, T-tests, univariate and multivariate logistic regression modeling were used. Results: Universally, providers knew that FA prevents birth defects. Over 88% knew when a woman should start taking folic acid for the prevention of NTDs; and over 85% knew FA supplementation beyond what is available in the diet is necessary. However, only half knew that 50% of all pregnancies in the United States are unplanned. Women heard information about multivitamins or FA most often during well woman visits in obstetrical/gynecology (ob/gyn) practice settings (65%), and about 50% of the time during well woman visits in family/general (fam/gen) practice settings and 50% of the time at gynecology visits (both settings). Among all providers, 42% did not know the correct FA dosage (400 μg daily). HCPs taking multivitamins were more than twice as likely to recommend multivitamins to their patients (Odds Ratio [OR] 2.27 95%, Confidence Interval [CI] 1.75–2.94). HCPs with lower income clients (OR 1.49, CI 1.22–1.81) and HCPs with practices having more than 10% minorities (OR 1.46, CI 1.11–1.92) were more likely to recommend supplements. NPs in ob/gyn settings were most likely and FAM/GENs were least likely to recommend supplements (OR 3.06, CL 1.36–6.90 and OR 0.64, CL 0.45–0.90 respectively). Conclusions: Knowledge about birth defects and the necessity of supplemental FA was high. Increasing knowledge about unintended pregnancy rates and correct dosages of FA is needed. The strongest predictor for recommending the use of FA supplements was whether the provider took a multivitamin
    • …
    corecore