7 research outputs found

    Etude du comportement rhéologique et mécanique de composites recyclés et pollués : recyclage iso fonction, rêve ou réalité ? = Study of rheological and mechanical behaviour of recycled and polluted composites : iso function recycling, dream or reality

    No full text
    National audienceNous étudions les effets de la pollution et du recyclage sur deux composites à matrice polypropylène. Ces effets ont été identifiés non seulement par la mesure du poids moléculaire et des propriétés rhéologiques mais aussi sur les caractéristiques mécaniques. Les polluants modèles choisis sont de l'éthylène glycol majoritairement présent dans le liquide de frein et de l'huile moteur. Ils ont été incorporés dans les composites en cours du process d'extrusion. Le recyclage a été simulé en effectuant plusieurs cycles d'extrusions successifs. Les échantillons ont été recyclés de 1 à 12 fois. Toutes ces nuances ont été testées. L'indice de fluidité, la viscosité, les propriétés en traction quasi statique ainsi que en compression dynamique ont été mesurés. Les polluants affectent davantage les propriétés rhéologiques par rapport aux propriétés mécaniques. Le recyclage thermomécanique, quant à lui, est principalement préjudiciable sur le comportement à rupture. Le résultat remarquable concerne l'effet modérateur des polluants sur la dégradation due au recyclage des propriétés des matériaux

    Étude du retrait de films de polypropylène laminés sur acier - Influence des paramètres de mise en forme

    No full text
    International audienceNowadays, thermoplastic polymers do not cease to attract the interest of the industrialists as steel / polymer composites for various applications in several domains, such as the automotive and the packaging. The ratio between their wide range of thermo-mechanical properties and their low weight density make these materials a real alternative for the current solutions for the lightening and the reinforcement of structural pieces. Likewise, their working facility is a major asset for performing parts of complex geometry. In this paper, we highlight the narrow relationship between the microstructure of a small impact isotactic polypropylene film, either filled or not by mineral particles (calcite), and its behaviour towards shrinkage which can occur during thermal treatments above its melting temperature. This phenomenon of shrinkage is characterized by dimensional instabilities which can in particular, affect the life cycle of the material. Indeed, they may induce the partial delamination of the steel sheet which is consequently exposed to various environmental aggressions. Corrosive behaviour can occur and cause early breakdown of the material. Influences of the extrusion and stamping processes on the microstructure and the shrinkage are presented. The macromolecular chains orientation of the crystalline phase, the volume damage and the heating parameters are studied, and show a real impact on the phenomenon magnitude. An experimental setup was developed at the laboratory to measure in real-time and with good precision, the displacements induced by shrinkage and the microstructural evolution of the polymer film during different thermal cycles. Finally, an empirical law allowing the shrinkage prediction is presented, taking into account the deformation value and the initial degree of chains orientation. These studies and their results have led to the determination of the optimal parameters settings for the different conformation processes with the aim of reducing the maximum of shrinkage

    Characterization of Contamination Effects for Two Polypropylene-Based Materials

    No full text
    International audienceIn this work, contamination effects are studied on two polypropylene-based materials. These effects were identified on the molecular weight and on rheological and mechanical properties. Model contaminants chosen in this study were ethylene glycol and engine oil. They were added during the extrusion process to simulate the degradation due to contaminants. To quantify contamination effects and to correlate them with the microstructure evolution, scanning electron microscope (SEM) analyses were also conducted. The analysis of the different obtained results led to a better understanding of the mechanisms involved in the contamination process. Contaminants slightly affect the rheological properties, whereas mechanical properties are more influenced. These observations are confirmed by the modification of the fractured surfaces of the materials due to the presence of contaminants observed on SEM micrographs

    Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites

    No full text
    International audienceAs recycled materials are increasingly used in design of structural components, it is necessary to understand the effect of recycling on the properties and durability of these materials. In this work, the recycling effects on two high impact polypropylenes (HiPP) are studied. The recycling process was simulated by performing several extrusion runs with the same material in order to get a better understanding of the multi recycling effects. These effects were identified not only on the molecular weight and the rheological properties but also on the mechanical properties and the deformation mechanisms. The volume strain has been also measured as a damage indicator in the studied polymers. For both materials, the analysis of the different results showed that the rheological and the mechanical properties were affected by the thermomechanical recycling process. In particular, this process led to the decrease of the molecular weight, the decrease of the failure stress and the decrease of the impact energy. Moreover, Scanning Electronic Micoscopy (SEM) pictures showed a modification of the deformation process due to the embrittlement of the amorphous matrix by the chain scission and by cavitation. Moreover, a better stability for talc filled HiPP was observed but a decrease of the failure stress was obtained because the interfaces talc/polypropylene (PP) matrix and ethylene propylene diene monomer (EPDM) droplets/PP matrix were degraded.Indeed, the knowledge of the molecular characteristics as well as the rheological and mechanical properties of recycled polymer-based composites will help in optimizing the recycling process for obtaining the desired properties needed to correctly design recycled structural part

    Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization

    No full text
    International audienceCellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applications. In this work, new cellulose acetate materials with highly flexible and hydrophilic grafts were obtained with different hydrophilic/hydrophobic balances. Cellulose acetate was grafted with methyl diethylene glycol methacrylate (MDEGMA) from brominated macroinitiators by atom transfer radical polymerization (ATRP) in two steps. The first step consisted of introducing ATRP initiator groups on cellulose acetate by reacting hydroxyl side groups with 2-bromoisobutyryl bromide. A preliminary study was then carried out to determine the experimental conditions for the controlled ATRP of MDEGMA homopolymerization in a solvent (cyclopentanone) compatible with cellulose acetate grafting. In these conditions, the MDEGMA homopolymerization followed Hanns Fischer's kinetics model accounting for the radical persistent effect. The ATRP grafting was then investigated for two cellulose acetate macroinitiators differing in the number of their ATRP initiator groups. Two families of graft copolymers with nano-structured architectures were obtained. The first family corresponded to copolymers with a high number of short grafts. The copolymers of the second family had almost the same graft weight fractions but a small number of long grafts. The morphology of the graft copolymers was then investigated by synchrotron X-ray scattering. The most informative results showed that the phase segregation depended upon the number and length of the poly(MDEGMA) grafts. The copolymer with 44 wt.% of long grafts showed a segregated morphology of nano-domains with sharp interfaces and a radius of gyration of 11.5 nm (from Guinier's law). These cellulose acetate copolymers eventually led to strong films with potential applications in membrane separations
    corecore