10 research outputs found

    Genetic and phenotypic attributes of splenic marginal zone lymphoma

    Get PDF
    Altres ajuts: Swiss Cancer Research, ID 3746, 4395, 4660, and 4705; Swiss National Science Foundation, IDSplenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments

    Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms

    No full text
    Purpose: In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. Methods: Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370. These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. Results: We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. Conclusion: A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects

    Erratum: Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms(Genet Med (2021)23(103-110)(s41436020009394)(10.1038/s41436-020-00939-4))

    No full text
    Correction to: Genetics in Medicine 2021; https://doi.org/10.1038/s41436-020-00939-4 In the article “Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms” by van Walree ES et al (Genet Med 2021;23:103-110), there was an error in a sentence in the Methods section of the abstract. This sentence should read “To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 controls, and the other 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls.

    Erratum: Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms(Genet Med (2021)23(103-110)(s41436020009394)(10.1038/s41436-020-00939-4))

    No full text
    Correction to: Genetics in Medicine 2021; https://doi.org/10.1038/s41436-020-00939-4 In the article “Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms” by van Walree ES et al (Genet Med 2021;23:103-110), there was an error in a sentence in the Methods section of the abstract. This sentence should read “To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 controls, and the other 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls.

    Effect of gonadal status on bone mineral density and radiological spinal deformities in adult patients with growth hormone deficiency

    No full text
    Growth hormone deficiency (GHD) in adult patients is associated with marked decrease in bone turnover, low bone mass and high risk of clinical and subclinical fractures. We investigated whether the prevalence of spinal deformities in adults with GHD was related to the gonadal status of patients. A total of 89 adult hypopituitary patients with severe GHD were evaluated for bone mineral density (BMD) and vertebral deformities (quantitative morphometric analysis). At the study entry, 54 patients were eugonadic whereas 35 patients were hypogonadic without replacement treatment. Radiological spinal deformities were found in 55 patients (61.8%) with higher prevalence in untreated (56 cases) versus treated (33 cases) GHD patients. Eugonadic and hypogonadic patients showed no significant difference in spinal deformities although T-score was significantly lower in hypogonadic as compared with eugonadic patients. Gonadal function was not correlated with the occurrence of spinal deformities which was instead inversely correlated with rhGH treatment. In conclusion, gonadal status may influence BMD in adult patients with GHD without affecting the risk to develop vertebral deformities. Conversely, rhGH replacement treatment seems to be the only factor influencing the risk to develop vertebral deformities in adult GHD patients

    Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms

    No full text
    Purpose: In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. Methods: Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370. These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. Results: We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. Conclusion: A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects

    Genetic and phenotypic attributes of splenic marginal zone lymphoma

    Get PDF
    : Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments

    Perspectives on ENCODE

    No full text
    The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.11Nsciescopu

    Expanded encyclopaedias of DNA elements in the human and mouse genomes

    No full text
    AbstractThe human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.11Nsciescopu
    corecore