13 research outputs found
Dual proteotoxic stress accelerates liver injury via activation of p62-Nrf2
Protein accumulation is the hallmark of various neuronal, muscular, and other human disorders. It is also often seen in the liver as a major protein-secretory organ. For example, aggregation of mutated alpha1-antitrypsin (AAT), referred to as PiZ, is a characteristic feature of AAT deficiency, whereas retention of hepatitis B surface protein (HBs) is found in chronic hepatitis B (CHB) infection. We investigated the interaction of both proteotoxic stresses in humans and mice. Animals overexpressing both PiZ and HBs (HBs-PiZ mice) had greater liver injury, steatosis, and fibrosis. Later they exhibited higher hepatocellular carcinoma load and a more aggressive tumor subtype. Although PiZ and HBs displayed differing solubility properties and distinct distribution patterns, HBs-PiZ animals manifested retention of AAT/HBs in the degradatory pathway and a marked accumulation of the autophagy adaptor p62. Isolation of p62-containing particles revealed retained HBs/AAT and the lipophagy adapter perilipin-2. p62 build-up led to activation of the p62–Nrf2 axis and emergence of reactive oxygen species. Our results demonstrate that the simultaneous presence of two prevalent proteotoxic stresses promotes the development of liver injury due to protein retention and activation of the p62–Nrf2 axis. In humans, the PiZ variant was over-represented in CHB patients with advanced liver fibrosis (unadjusted odds ratio = 9.92 [1.15–85.39]). Current siRNA approaches targeting HBs/AAT should be considered for these individuals. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland
Kontrollerede Ruiner:En ny kritisk praksis?
Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been evaluated. We here explored the therapeutic potential of dexamethasone (Dex)-loaded liposomes for inflammatory liver diseases, using experimental models of acute and chronic liver injury in mice. Fluorescently labeled liposomes predominantly accumulated in hepatic phagocytes, but also in T cells. Importantly, Dex-loaded liposomes reduced T cells in blood and liver, more effectively than free Dex, and endorsed the anti-inflammatory polarization of hepatic macrophages. In experimental chronic liver damage, Dex-loaded liposomes significantly reduced liver injury and liver fibrosis. In immune-mediated acute hepatitis Dex-loaded liposomes, but not free Dex, significantly reduced disease severity. T cells, not macrophages, were significantly depleted by Dex liposomes in liver disease models in vivo, as further supported by mechanistic cell death in vitro studies. Our data indicate that Dex liposomes may be an interesting treatment option for liver diseases, in particular for immune-mediated hepatitis. The depletion of T cells might represent the major mechanism of action of Dex liposomes, rather than their macrophage-polarizing activities
Novel rat model of repetitive portal venous embolization mimicking human non-cirrhotic idiopathic portal hypertension
Si l’on n’est pas trop regardant en matière de nuances et de différences entre religions, spiritualités, philosophies, mystiques, ésotérismes et autres phénomènes semblables – ou dissemblables – on trouvera tout ce qu’on cherche (ou presque) dans le présent ouvrage sur le « croire éclaté » à la mode du jour. Notons que la bibliographie finale et celle de « bas-de-page » ne manquent pas d’intérêt. Mais on échappe mal à l’impression que d’autres travaux signalent mieux que le présent la logique..
Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease
Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation and fibrosis, which might progress to cirrhosis. Human NASH is associated with metabolic syndrome (MS). Currently, rodent NASH models either lack significant fibrosis or MS. ApoE(-/-) mice are a MS model used in cardiovascular research. The aim of this work was to establish and characterise a novel mouse NASH model with significant fibrosis and MS. ApoE(-/-) and wild-type mice (wt) were fed either a western-diet (WD), methionine-choline-deficient-diet (MCD) or normal chow. Liver histology, RT-PCR, hepatic hydroxyproline content, triglycerides and cholesterol levels, and fasting glucose levels assessed hepatic steatosis, inflammation and fibrosis. Further, portal pressure was measured invasively, and kidney pathology was assessed by histology. ApoE(-/-) mice receiving WD showed abnormal glucose tolerance, hepatomegaly, weight gain and full spectrum of NASH including hepatic steatosis, fibrosis and inflammation, with no sign of renal damage. MCD-animals showed less severe liver fibrosis, but detectable renal pathological changes, besides weight loss and unchanged glucose tolerance. This study describes a murine NASH model with distinct hepatic steatosis, inflammation and fibrosis, without renal pathology. ApoE(-/-) mice receiving WD represent a novel and fast model with all characteristic features of NASH and MS well suitable for NASH research