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a b s t r a c t

Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Be-
sides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The
potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been
evaluated. We here explored the therapeutic potential of dexamethasone (Dex)-loaded liposomes for
inflammatory liver diseases, using experimental models of acute and chronic liver injury in mice. Flu-
orescently labeled liposomes predominantly accumulated in hepatic phagocytes, but also in T cells.
Importantly, Dex-loaded liposomes reduced T cells in blood and liver, more effectively than free Dex, and
endorsed the anti-inflammatory polarization of hepatic macrophages. In experimental chronic liver
damage, Dex-loaded liposomes significantly reduced liver injury and liver fibrosis. In immune-mediated
acute hepatitis Dex-loaded liposomes, but not free Dex, significantly reduced disease severity. T cells, not
macrophages, were significantly depleted by Dex liposomes in liver disease models in vivo, as further
supported by mechanistic cell death in vitro studies. Our data indicate that Dex liposomes may be an
interesting treatment option for liver diseases, in particular for immune-mediated hepatitis. The
depletion of T cells might represent the major mechanism of action of Dex liposomes, rather than their
macrophage-polarizing activities.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Liposomes are nano-sized biodegradable drug delivery systems
that can be used for a targeted, cell-specific administration of drugs
with reduced systemic side effects. The increased efficacy and
reduced toxicity of drugs upon liposomal encapsulation has been
convincingly established for anti-cancer chemotherapeutics, for
instance, for the cytostatic drug doxorubicin [1]. Liposomal drug
delivery is also considered to be potentially beneficial for the
treatment of inflammatory diseases [2], because the systemic
administration of anti-inflammatory drugs regularly results in
systemic immunosuppression rendering patients susceptible for
infections such as sepsis [3]. We have previously shown that lipo-
somal encapsulation of the anti-inflammatory drug dexametha-
sone allows for a reduction of unspecific effects of the encapsulated
compounds on human primary cells [4].

Corticosteroids are routinely used to treat inflammatory liver
diseases, such as autoimmune hepatitis and alcoholic hepatitis
[5,6]. At present, no liposomal corticosteroid formulations have
been approved for the treatment of liver diseases yet. As large
quantities of nanoparticles translocate to the liver upon systemic
application [7], nanoparticle-based drug delivery could represent a
promising strategy for combatting liver diseases [8]. The accumu-
lation of nanoparticles in the liver can be partially related to their
internalization by hepatic macrophages, such as Kupffer cells,
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which are located at the fenestrated endothelium and which are in
direct contact with blood [9]. Subsequent to their internalization by
macrophages [10], nanoparticles are known to influence the state
of hepatic macrophage polarization [11].

Macrophages exhibit a high plasticity with respect to their
functions in regulating inflammation [12]. They can be polarized
into either a proinflammatory M1 or an anti-inflammatory M2
macrophage subtype. Key molecular markers of M1 macrophages
are tumor necrosis factor a (TNFa) and interleukin 1b (IL1b),
whereas characteristic M2 markers are Arginase 1 (Arg1), resistin
like alpha (Retnla, FIZZ-1) and IL4 [13]. M1 macrophages in
diseased livers mainly originate from monocytes that translocate
into the liver upon injury, and they express F4/80, CD11b and the
Ly6C antigen on their surface, whereas Kupffer cells are resident
liver macrophages, expressing high levels of F4/80 but low levels of
Ly6C and CD11b [14]. Alternatively activated M2 macrophages
exhibit characteristic surface markers such as the IL4 receptor a
(CD124), which inhibits inflammation [15], the mannose receptor
(CD206) and the macrophage C-type lectin domain family 10,
member A (CLEC10A, CD301), all of which can potentially be
regulated by targeted nanotherapeutics [11].

While many reports have underlined the importance of mac-
rophages for interactions with nanoparticles in vitro, it has not
been studied in great detail to which extent these observations
translate into disease models in vivo. We have recently demon-
strated that liposomes loaded with the corticosteroid dexameth-
asone block migratory and inflammatory functions of primary
human macrophages in vitro [4]. We now investigated the effects
of liposomal encapsulated dexamethasone on macrophages and
other immune cell populations in vivo. Using fluorescently labeled
and/or dexamethasone (Dex)-loaded liposomes for intravenous
administration in mice, we characterized the biodistribution,
toxicity, impact on immune cell numbers, and functions in the
circulation and in the liver. We further evaluated the potential of
Dex-loaded liposomes as therapeutics for treating hepatitis and
liver fibrosis, employing experimental models of acute Conca-
navalin A (ConA)-based hepatitis and chronic toxic carbon tetra-
chloride (CCl4)-based liver injury, respectively. As these data
unexpectedly indicated that Dex liposomes primarily exert their
anti-inflammatory actions via depleting T cells in vivo, we
furthermore isolated primary murine lymphocytes as well as
macrophages and explored cell-specific mechanisms of Dex lipo-
some induced cell death.
2. Materials and methods

2.1. Liposome preparation and characterization

Liposomes were prepared based on the film-method [16]. Briefly, Dipalmitoyl
phosphatidylcholine (DPPC) and PEG-(2000)-distearoyl phosphatidylethanolamine
(PEG-(2000)-DSPE), obtained from Lipoid (Ludwigshafen, Germany), cholesterol,
obtained from Sigma (St. Louis, MO, USA), and (N-(7-Nitrobenz-2-oxa-1,3-diazol-4-
yl)-1,2-dihexadecanoyl-snglycero-3-phosphoethanolamine, triethyl-ammonium
salt) (NBD-PE) was obtained from Molecular Probes (Grand Island, New York,
USA). All other chemicals were of reagent grade. A mix of chloroform and methanol
(volumetric ratio of 10:1) containing DPPC, PEG-(2000)-DSPE, NBD-PE, and
cholesterol was prepared at a molar ratio of 1.85:0.15:0:1. One mol% of NBD-PE was
added to the organic phase in relation to the total amount of lipid, including
cholesterol. The organic phase was evaporated with a rotavapor (BUCHI Labor-
technik AG, Flawil, Switzerland), followed by nitrogen flushing for removal of re-
sidual organic solvent. Hydration of the lipid film was done at 50 �C in an aqueous
solution of dexamethasone phosphate in a concentration of 100 mg/mL and a
phospholipid concentration of 100 mM. Liposomes without dexamethasone phos-
phate were dispersed in phosphate buffered saline (PBS). The liposomes were
sequentially extruded through two stacked polycarbonate filters with pore sizes of
600, 200, and 100 nm (Nuclepore, Pleaston, USA) under nitrogen pressure, using a
Lipex high pressure extruder (Lipex, Nortern Lipids, Vancouver, Canada), retrieving
liposomes sizing 100 nm. Unencapsulated dexamethasone phosphate was cleared
by dialysis at 4 �C against PBS using Slide-A-Lyzer dialysis cassettes (Pierce, Rock-
ford, USA) with a molecular cut-off of 10 kD [11].
The mean particle size was determined by dynamic light scattering with an
ALVCGS-3 system (Malvern Instruments, Worcestershire, United Kingdom). Thezeta
potential was determined using a Zetasizer Nano Z (Malvern Instruments Ltd.,
Worcs, UK) and that of the PEGylated liposomes was 5.1 ± 1.4 mV. The phospholipid
content was determined with a phosphate assay [17,18] on the organic phase after
extraction of the liposomal preparation with chloroform. The aqueous phase after
extraction was used to determine the liposomal dexamethasone phosphate con-
centration of the liposomes by high performance liquid chromatography using a
mobile phase of acetonitrile/water of pH 2 at a ratio of 25/75 and monitoring the
eluents with a UV-detector at 254 nm. A limulus amebocyte lysate (LAL) assay QCL-
1000 obtained from Lonza (Walkersville, MD, USA) was used to test for possible
endotoxin contaminations of the liposomes. The kit was used according to the in-
structions of the manufacturer.

2.2. Mice

C57BL6/J wild-type mice were housed in a specific pathogen-free environ-
ment. All experiments were done with male animals at 8e12 weeks of age under
ethical conditions approved by the appropriate authorities according to German
legal requirements. In an earlier in vitro study, we have used Dex at a concen-
tration of 10 mg/mL with human primary immune cells. This concentration
resembled a Dex concentration of 1 mg/kg body weight, based on the assumption
that one mouse has a total body fluid volume (where liposomes can accumulate)
of 2.5 mL, a comparative study that we have done earlier with gold nanorods
[11,19]. For the cell culture experiments, the liposomes without Dex were diluted
with sterile 0.9% sodium chloride solution to a phospholipid (PL) concentration
of 77 nmol/mL, corresponding to a concentration of 77 mM PL in the cell culture
medium. Thus, one mouse weighing 25 g received 192.5 mM of liposomes, what
corresponds to a concentration of 7.7 mM PL/kg body weight (25 g � 40).

2.3. Fluorescence reflectance imaging

Organs (liver, kidneys, spleen, intestine, lung, heart, muscle, brain, and bone) of
mice that were sacrificed 72 h after the injection of 80 nM/kg liposomes were
scanned ex vivo (at 750 nm) for liposomal accumulation using a 2D Fluorescence
Reflectance Imaging (FRI) (FMT2500 LX, PerkinElmer, Waltham, Massachusetts,
USA). The total fluorescence of each organ was quantified in counts/energy
(normalized to 100 mm2/tissue).

2.4. Liver injury models

Liposomes and control solutions were injected intravenously at a volume of
100 mL. ConA-based hepatitis was induced after 40 h by injecting ConA (Sigmaal-
drich, St. Louis, USA) at 15 mg/kg intravenously, and sacrificing mice eight hours
later. Chronic liver injury was induced using repetitive intraperitoneal CCl4 (Merck,
Darmstadt, Germany) challenge twice weekly for six weeks [11]. Control animals
received the same volume of vehicle (corn oil). Mice were sacrificed 48 h after the
last injection of CCl4.

2.5. Liver enzymes, histology, and immunohistochemistry

ALT was assessed at 37 �C in serum using the Modular Preanalytics System
(Roche, Penzberg, Germany). Hematoxylin and Eosin (H&E) and Sirius Red stainings
were done following established protocols. Sirius Red stained sections were
analyzed by morphometrical assessment of the area fraction. Staining of CD45 and
F4/80, and a smooth muscle actin (aSMA) was done according to optimized pro-
tocols [20].

2.6. Cell isolation, flow cytometry, and fluorescence microscopy

Blood was taken from the right ventricle. Red blood cell lysis was done using
Pharm Lyse (BD, Franklin Lakes, USA) and was stopped using Hank's buffer salt
solution (HBSS) supplemented with 5 mM ethylenediaminetetraacetic acid and 0.5%
bovine serum albumin. Hepatic leukocytes were isolated from liver as described
earlier [11]. Single cell suspensions were filtered using a 100 mM mesh, and stained
for flow cytometry as described earlier in detail [11]. Additionally, count beads
(calibrite beads, BD, Franklin Lakes, USA) were added to organ cell suspensions to
determine cell numbers in different organs. Flow cytometric data are given as per-
centages of leukocytes or as absolute numbers calculated from organ weight or
blood volume. To prepare sections for fluorescence microscopy, cryosections sizing
20 mM were prepared and analyzed using a Zeiss Axio Observer Z1 fluorescence
microscope (Carl Zeiss, Oberkochen, Germany).

2.7. Cell viability and cell death assessment

Live-dead staining was done in 48 well plates according to the instructions of
the manufacturer (Life Technologies, Carlsbad, CA, USA). To determine the mode of
cell death, we used an Annexin V (conjugated with allophycocyanin) apoptosis
detection kit (BD, Franklin Lakes, USA). Propidium iodide was used to stain necrotic
cells in parallel (BD, Franklin Lakes, USA).
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2.8. Gene expression analysis of liver tissue

Liver pieces were snap-frozen in liquid nitrogen, and RNAwas purified using the
peqGold kit (PEQLAB Biotechnologie GmbH, Erlangen, Germany). Complementary
DNA was generated from RNA using the First Strand cDNA synthesis kit (Roche,
Penzberg, Germany). Quantitative real-time polymerase chain reaction was done
based on SYBR Green reagent (Roche, Penzberg, Germany). Reactions were done as
triplicates, and b-actinwas used to normalize gene expression. Primer sequences are
available upon request.

2.9. Statistical analysis

Statistical analysis was done using GraphPad prism 5 using appropriate statis-
tical tests, as indicated in the figure legends.

3. Results and discussion

3.1. Biodistribution of liposomes on an organ and cellular level

To study the biodistrubution of liposomes in vivo, we performed
FRI ex vivo scans of bone, brain, muscle, heart, lung, intestine,
spleen, kidney, and liver (Fig. 1(A)). Quantifications of fluorescence
clearly revealed that the liver is the predominant organ for
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macrophages, which were stained using CD11b and F4/80 in
various tissues. However, at higher doses, liposomes were also
detected in T cells and, to a lesser extent, in B cells (Fig. 2(A)).
Because hepatic macrophages are potential target cells for liver
therapies, we further distinguished liposome accumulation in
either infiltrating inflammatory macrophages (iMF) or resident
liver macrophages (specifically Kupffer cells [KC]), based on flow
cytometry (Fig. 1(B)). At high concentrations, surprisingly, the li-
posomes mostly accumulated in iMF, whereas at the highest
concentrations, liposomes were found both in KC and iMF
(Fig. 1(C)).

3.2. Immunosuppressive and immune-modulatory effects of Dex
liposomes in healthy mice

While it is well-known that immunosuppressive nanoparticles
can affect hepatic macrophages [22], no comprehensive analysis of
the effects of systemically administered Dex-containing liposomes
on other immune cells such as blood lymphocytes has been per-
formed. Such effects are considered to be meaningful as earlier
studies suggested inhibitory effects of Dex liposomes on lympho-
cyte functionality in vitro [23]. In fact, Dex liposomes evoked a
significant depletion of both CD4 and CD8þ T cells in blood
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liver injury caused by encapsulated Dex, because we also detected
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injury (Supplementary Fig. S1). These mild toxic effects with high
dose Dex liposomes were similar to earlier findings obtained with
high dosages of gold nanoparticles [11]. Notably, the endotoxin
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detection limit of a Limulus amebocyte lysate (LAL assay), and
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immune cells were excluded.
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the broad spectrum of cytokine inhibition by glucocorticoids (GC)
[24]. We further studied the immune cell subsets in spleen and
observed similar immunosuppressive effects as in blood and liver,
but to a lesser degree (Supplementary Fig. S3).

To study the effects of Dex and Dex liposomes on liver leuko-
cytes, we performed immunohistochemical staining for the
leukocyte marker CD45 on liver tissue. At the highest concentra-
tions, Dex liposomes reduced the numbers of hepatic leukocytes
(Fig. 4(A)), which was confirmed by flow cytometric determination
(Fig. 4(B)). Upon flow cytometric phenotyping of leukocytes in the
liver, T and B cells were found to be significantly reduced, whereas
e as in blood e neutrophils were significantly increased at the
highest dose of Dex liposomes (Fig. 4(B)). Staining of hepatic
macrophages with the macrophage marker F4/80 revealed a
reduction by Dex liposomes (Fig. 4(C)); this was almost exclusively
related to reduced numbers of iMF but not of KC (Fig. 4(D), left).
Similar to the monocyte depletion observed in blood, the iMFwere
significantly depleted by 10 mg/kg of free Dex, as well as by 1 and
10 mg/kg of Dex-containing liposomes (Dex-equivalent doses;
Fig. 4(D)). In addition to their reduction in number, the iMF in the
liver were also polarized towards the alternatively activated (anti-
inflammatory) M2 subtype, as reflected by expression of the M2
markers CD124, CD206 and CD301 upon treatment with Dex lipo-
somes (Fig. 4(E)).

3.3. Treatment of chronic liver injury and fibrosis using Dex
liposomes

Due to the strong depletion of T and B cells and the efficient
polarization of macrophages at 1 mg/kg of Dex liposomes, this dose
of dexamethasone was used for subsequent experiments in mouse
models of liver diseases. We first employed amodel of chronic toxic
liver injury by repetitive injections of CCl4, which selectively kills
hepatocytes and serves as a reliable model of liver fibrosis [25]. The
CCl4 injections were done twice weekly for six weeks, and Dex or
Dex liposomes were administered starting from the third week of
CCl4 damage, to simulate therapeutic intervention in chronic liver
injury. We found a significant reduction of liver damage in histol-
ogy, reflected by reduced necrotic areas, inmice treatedwith Dex or
Dex liposomes for 4 weeks (Fig. 5(A)), supported by reductions in
the serum liver injury indicators AST and ALT (Fig. 5(B)).

Patients with chronic liver diseases are particularly hampered
by progressive scarring of the liver as an aberrant wound healing
reaction, termed liver fibrosis [26]. To assess the effects of the
glucocorticoid-based drugs on progressive liver fibrogenesis, we
performed immunohistochemical staining of aSMA, an indicator of
hepatic stellate cell (HSC) activation (Fig. 6(A)), and of extracellular
collagen fibers, the hallmark of fibrosis (Fig. 6(B)). Treatment with
Dex and Dex-loaded liposomes significantly reduced HSC activation
and collagen accumulation in chronic liver injury. Quantifications
of Sirius Red staining indicated that Dex liposomes more efficiently
reduced the collagen content in the liver compared to free Dex,
while hepatic gene expression levels aSMA and collagen 1 (Col1A1)
were similarly reduced in Dex and Dex liposome treated animals
(Fig. 6(C)). According to the immunohistochemical staining of liver
tissue for CD45, hepatic leukocytes were strongly reduced upon
Dex and Dex liposome treatment during chronic liver injury
(Fig. 6(D)). Surprisingly, T cells were the most affected cell type by
flow cytometric analysis, while Kupffer cells even increased due to
the treatment with Dex liposomes (Fig. 6(E)), coherent with earlier
findings of a mild activation of human terminally differentiated
macrophages after incubation with Dex liposomes [4]. The Dex li-
posomes led to a pronounced increase in the number of CD301þ

iMF (Fig. 6(F)), similar to the M2 polarizing effects observed in
healthymice (Fig. 4(E)). BymRNA expression analysis of whole liver
tissue, IFNg, which mainly originates from activated T cells, but not
anti-inflammatory IL10, was found to be strongly reduced by the
Dex-loaded liposomes (Fig. 6(G)), further supporting the role of T
cells as cellular targets of Dex liposomes.

3.4. Dex liposome administration protects from immune-mediated
hepatitis

As systemically administered corticosteroids are the first choice
for the treatment of autoimmune hepatitis [27], we next evaluated
the efficacy of Dex or Dex liposomes in an experimental model of
acute liver injury based on Concanavalin A (ConA), which serves as
a mouse model of immune-mediated hepatitis [28]. When mice
were treated with Dex or Dex liposomes and subjected to ConA-
mediated hepatitis 40 h later, Dex liposomes but not the free Dex
almost completely abolished liver damage, with nearly normali-
zation of liver histopathology and reduced necrotic areas (Fig. 7(A)),
as well as significantly reduced serum liver enzymes (Fig. 7(B)).
Extensive flow cytometric analyses of blood leukocytes again
demonstrated that T cells were significantly reduced by the Dex
liposomes, whereas neutrophils were increased (Fig. 7(C)). The
leukocyte infiltration into the liver was similar for all treatment
groups, as shown by CD45-based immunohistochemical staining
(Fig. 8(A)). Importantly, T cells were identified as the only cell type
that was significantly reduced upon Dex liposome treatment
(Fig. 8(B)). In line, only the Dex-loaded liposomes evoked a marked
reduction in various cytokines after ConA-induced hepatitis
(Supplementary Fig. S4), corroborating the notion that liposomal
Dex efficiently suppressed the immune activation underlying liver
injury.

3.5. Dex liposomes induce cell death in T cells, but not in
macrophages

Altogether, our experiments indicate that hepatic T cells rather
than macrophages were the decisive cell type that was efficiently
targeted by Dex liposomes in experimental liver injury models. The
prominent depletion of T cell counts in blood and liver prompted us
to address the sensitivity of T cells, in comparison to macrophages,
to Dex and Dex-loaded liposomes. We therefore generated mac-
rophages from bone marrow cells and isolated T cells from the
spleens of untreatedmice. Both cell typeswere then incubatedwith
different concentrations of Dex and Dex-loaded liposomes (1 mg/
mL, 10 mg/mL, and 100 mg/mL), which corresponded to the con-
centrations used in vivo (0.1 mg/kg, 1 mg/kg, and 10 mg/kg), ac-
cording to calculations described earlier [11,19]. As expected, T cells
were indeed much more sensitive to Dex-induced cell death, as
indicated by specific live-dead cell staining (Fig. 9(A)). T cells were
highly susceptible to cell death induction already at low concen-
trations of Dex liposomes (1 mg/mL, which corresponds to an in vivo
dosage of 1 mg/kg), but only at higher concentrations of free Dex
(Fig. 9(B)). In contrast, the cell viability of bone marrow-derived
primary mouse macrophages was unaffected by both compounds
(Fig. 9(B)). As the high numbers of iMF during chronic liver injury
result from infiltrating monocytes of bone marrow origin [29], our
in vitro experiments are in good agreement with the observation
that the iMF compartment in the liver was not quantitatively
reduced by the Dex liposome treatment in the CCl4 and ConA
model. On the contrary, the ConA hepatitis model is dependent on
hepatic T cell activation and accumulation [30], thereby explaining
the strong effects of Dex liposomes by depleting T cells on the liver
injury phenotype of this model in vivo.

Upon binding to the cytosolic glucocorticoid receptor, gluco-
corticoids activate and suppress a large number of important in-
flammatory mediators via transcriptional mechanisms [31], but
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Fig. 7. Effects of dexamethasone-loaded liposomes on experimental immune-mediated hepatitis in vivo. Eight weeks old male C57BL/6 mice were treated with vehicle control (0.9% sodium chloride) 100 nm sizing liposomes,
dexamethasone (Dex), or liposomal Dex intravenously, followed 40 h later of an intravenous injection of 15 mg/kg Concanavalin A (ConA). Mice (n ¼ 5 per condition) were sacrificed eight hours after ConA injection. Hematoxilin and
eosin staining of liver sections (please note that necrotic areas appear lighter) (a). Serum aspartate aminotransferase (AST) and alanine transaminase (ALT) activity reflect liver injury (b). Flow cytometric analysis of T cells, B cells,
monocytes, and neutrophils in the blood (c). Data represent mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA).
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Fig. 8. Effects of dexamethasone-loaded liposomes on intrahepatic immune cell populations in experimental hepatitis in vivo. Eight weeks old C57BL/6 mice were treated with vehicle, control liposomes, dexamethasone (Dex), and
liposomal Dex intravenously, followed 40 h later by intravenous injection of 15 mg/kg Concanavalin A (ConA). Mice (n ¼ 5 per condition) were sacrificed eight hours after ConA injection. CD45 immunohistochemical staining (a). Flow
cytometric analysis of hepatic immune cell populations (b). Data represent mean ± SD; ***P < 0.001 (one-way ANOVA).
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Fig. 9. Effects of dexamethasone-loaded liposomes on the viability of T cells and macrophages in vitro. Bone marrow-derived macrophages or splenicT cells were incubated for 24 h
with either dexamethasone (Dex), or Dex liposomes and analyzed using live-dead staining (a). Statistical summary of live-dead staining of both cell types (n ¼ 5 independent
experiments) (b). Flow cytometric analysis of propidium iodide (necrotic cells) and Annexin V staining (apoptotic cells) of lymphocytes after incubation with Dex or Dex liposomes
(representative plots, c).Data represent mean ± SD; **P < 0.01, ***P < 0.001 (one-way ANOVA).
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they are also known to trigger cell death pathways in leukocytes
[32]. We therefore finally set out to explore the mechanism of
dexamethasone-induced T cell depletion using propidium iodide
(PI) and Annexin V staining. While PI staining identifies necrotic
cells (as it penetrates the membrane of dead cells), Annexin V
staining can be used to determine apoptosis based on surface
phosphatidylserine expression [33]. Using the combination of
Annexin V and PI, flow cytometry allows for distinguishing the type
of cell death: viable cells stain negative for both Annexin V and PI,
while cells which are in early apoptosis are Annexinþ and PI�,
whereas cells in late apoptosis or necrotic cells, on the other hand,
are double positive. Interestingly, incubating T cells with Dex
resulted in a short period of early apoptosis (bottom right quarter)
with a rapid transition to late apoptosis and necrosis (top right and
left quarters) (Fig. 9(C)). Similar to our earlier findings [4], lipo-
somal encapsulation reduced the sensitivity of the T cells to Dex
compared to free Dex, as indicated by an attenuated course of cell
death (Supplementary Fig. S5) and a shift towards apoptotic in
comparison to necrotic pathways especially at earlier time-points
(Fig. 9(C)).

Our data corroborate the hypothesis that liposomal corticoste-
roids are highly suitable for treating inflammatory disorders [34],
and expand this hypothesis to the treatment of acute and chronic
inflammatory liver diseases. On the one hand, liposomes strongly
accumulate in the liver, but they are not restricted to uptake by
Kupffer cells [10,11,24], because liposomes target several immune
cells including inflammatory macrophages and T lymphocytes. On
the other hand, they not only endorse the anti-inflammatory dif-
ferentiation of macrophages, generally referred to as M2 polariza-
tion, as anticipated from in vitro experiments [4], but they also
promote the depletion of T cells. This latter mode of action might be
of the utmost importance for the treatment of autoimmune hepa-
titis, as liposomal encapsulation could substantially reduce off-
target effects compared with conventional corticosteroid
treatment.
4. Conclusions

Virtually all nanomaterials strongly accumulate in the liver,
which makes them interesting vehicles for treating liver diseases.
Our study shows that liposomal dexamethasone may be suitable
for targeting the liver as well as relevant intrahepatic immune cells.
By depleting hepatic and systemic T cells, as well as by polarizing
macrophages towards an anti-inflammatory phenotype, liposomal
dexamethasone ameliorates acute and chronic experimental liver
injury models. Thus, liposomal encapsulation enables an effective
and selective delivery of dexamethasone to pathogenic immune
cell populations in conditions of autoimmune mediated hepatitis.
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