7 research outputs found

    Factor analysis for construct validity of a trunk impairment scale in Parkinson’s disease: a cross-sectional study

    Get PDF
    ObjectivesTo investigate the construct validity of the Trunk Impairment Scale (TIS), which was developed to assess trunk impairment in patients with stroke, in patients with Parkinson’s disease (PD).DesignThis retrospective, cross-sectional study enrolled consecutive PD inpatients. Correlation analysis was performed to clarify whether the TIS assessment was related to other balance functions, lower extremity muscle strength, or walking ability. Factor analysis was performed to see how the background factors of TIS differ from balance function, lower limb muscle strength, and walking ability.ResultsExamining the data of 471 patients with PD, there were relationships between TIS and the Mini-Balance Evaluation Systems Test (r = 0.67), Barthel Index (r = 0.57), general lower limb extension torque (r = 0.51), two-minute walk test (r = 0.54), Hoehn and Yahr stage (r = −0.61), and Movement Disorder Society Unified Parkinson’s Disease Rating Scale part III total points (r = −0.59). Factor analysis showed that TIS items were divided into three factors (an abdominal muscles and righting reflex component; a perception and verticality component; and a rotational component), differing from other scales that included clinical assessment items.ConclusionThe TIS can be useful for assessing the underlying trunk impairment as a basis for activities of daily living, gait function, and balance ability in patients with PD

    Validity Verification of Human Pose-Tracking Algorithms for Gait Analysis Capability

    No full text
    Two-dimensional (2D) clinical gait analysis systems are more affordable and portable than contemporary three-dimensional (3D) clinical models. Using the Vicon 3D motion capture system as the standard, we evaluated the internal statistics of the Imasen and open-source OpenPose gait measurement systems, both designed for 2D input, to validate their output based on the similarity of results and the legitimacy of their inner statistical processes. We measured time factors, distance factors, and joint angles of the hip and knee joints in the sagittal plane while varying speeds and gaits during level walking in three in-person walking experiments under normal, maximum-speed, and tandem scenarios. The intraclass correlation coefficients of the 2D models were greater than 0.769 for all gait parameters compared with those of Vicon, except for some knee joint angles. The relative agreement was excellent for the time–distance gait parameter and moderate-to-excellent for each gait motion contraction range, except for hip joint angles. The time–distance gait parameter was high for Cronbach’s alpha coefficients of 0.899–0.993 but low for 0.298–0.971. Correlation coefficients were greater than 0.571 for time–distance gait parameters but lower for joint angle parameters, particularly hip joint angles. Our study elucidates areas in which to improve 2D models for their widespread clinical application

    Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems

    Get PDF
    Geochemical characteristics of hydrothermal fluids in the Iheya North hydrothermal field, mid-Okinawa Trough, was investigated. Twelve-years observation reveals temporal variation of vent fluid chemistry potentially controlled by temporally varying pattern of the phase-separation and -segregation, while the constant Element/Cl ratios among the periods and chimneys indicate the stable chemical composition of the source hydrothermal fluid prior to undergoing phase-separation. The high K contents in the estimated source fluid are typical in the arc-backarc hydrothermal systems due to the hydrothermal reaction with the K-enriched felsic rocks. The high I, B and NH4 contents and alkalinity are derived from decomposition of the sedimentary organic matters. Compositional and isotopic properties of gas species, CH4, H2, CO2, and C2H6, strongly suggest a dominance of biogenic CH4 associated with the sedimentary organic matter. Based on the carbon mass balance calculation and the multidisciplinary investigations of the Iheya North hydrothermal system since the discovery, we hypothesized that the microbial methanogenesis occurs not only within the Central Valley where hydrothermal vents exist, but also in the spatially abundant and widespread basin-filling sediments surrounding the Iheya North Knoll, and that the microbially produced CH4 is recharged together with the source fluid into the deep hydrothermal reaction zone. This “Microbial Methanogenesis at Recharge area in hydrothermal circulation” (MMR) model would be an implication for the generation and incorporation of hydrothermal fluid CH4 in the deep-sea hydrothermal systems but also for those of cold seep CH4 and for the presently uncertain hydrothermal fluid paths in the subseafloor environments. In the near future, the IODP drilling will be conducted in the Iheya North hydrothermal system, and give an excellent opportunity to testify our MMR model
    corecore