298 research outputs found

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    The asymmetry and temporal dynamics of incidental letter-location bindings in working memory.

    Get PDF
    Verbal-spatial bindings are integral to routine cognitive operations (e.g., reading), yet the processes supporting them in working memory are little understood. Campo and colleagues [Campo, P., Poch, C., Parmentier, F. B. R., Moratti, S., Elsley, J. V., Castellanos, N., … Maestú, F. (2010). Oscillatory activity in prefrontal and posterior regions during implicit letter-location binding. Neuroimage, 49, 2807-2815] recently reported data suggesting obligatory letter-location binding when participants were directed to remember the letters in a display (of letters in locations), but no evidence for binding when instructed to remember the filled locations. The present study contrasted two explanations for this binding asymmetry. First, it may result from an obligatory dependence on "where" during the representation of "what" information, while "where" information may be held independently of its contents (the strong asymmetry hypothesis). Second, it may constitute a snapshot of a dynamic feature inhibition process that had partially completed by test: the asymmetrical inhibition hypothesis. Using Campo and colleagues' task with a variable retention interval between display and test, we presented four consonants in distinct locations and contrasted performance between "remember letters" and "remember locations" instructions. Our data supported the strong asymmetry hypothesis through demonstrating binding in the verbal task, but not in the spatial task. Critically, when present, verbal-spatial bindings were remarkably stable, enduring for at least 15 seconds

    Do birds of a feather flock together? Comparing habitat preferences of piscivorous waterbirds in a lowland river catchment

    Get PDF
    Waterbirds can move into and exploit new areas of suitable habitat outside of their native range. One such example is the little egret (Egretta garzetta), a piscivorous bird which has colonised southern Britain within the last 30 years. Yet, habitat use by little egrets within Britain, and how such patterns of habitat exploitation compare with native piscivores, remains unknown. We examine overlap in habitat preferences within a river catchment between the little egret and two native species, the grey heron (Ardea cinerea) and great cormorant (Phalacrocorax carbo). All species showed strong preferences for river habitat in all seasons, with other habitat types used as auxiliary feeding areas. Seasonal use of multiple habitat types is consistent with egret habitat use within its native range. We found strong egret preference for aquatic habitats, in particular freshwaters, compared with pasture and arable agricultural habitat. Egrets showed greater shared habitat preferences with herons, the native species to which egrets are most morphologically and functionally similar. This is the first study to quantify little egret habitat preferences outside of its native range

    Primitive computations in speech processing

    Get PDF
    Previous research suggests that artificial-language learners exposed to quasi-continuous speech can learn that the first and the last syllables of words have to belong to distinct classes (e.g., Endress & Bonatti, 2007; Peña, Bonatti, Nespor, & Mehler, 2002). The mechanisms of these generalizations, however, are debated. Here we show that participants learn such generalizations only when the crucial syllables are in edge positions (i.e., the first and the last), but not when they are in medial positions (i.e., the second and the fourth in pentasyllabic items). In contrast to the generalizations, participants readily perform statistical analyses also in word middles. In analogy to sequential memory, we suggest that participants extract the generalizations using a simple but specific mechanism that encodes the positions of syllables that occur in edges. Simultaneously, they use another mechanism to track the syllable distribution in the speech streams. In contrast to previous accounts, this model explains why the generalizations are faster than the statistical computations, require additional cues, and break down under different conditions, and why they can be performed at all. We also show that that similar edge-based mechanisms may explain many results in artificial-grammar learning and also various linguistic observations
    • …
    corecore