115 research outputs found

    An iterative approach of protein function prediction

    Get PDF
    Background: Current approaches of predicting protein functions from a protein-protein interaction (PPI) dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins) will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins). Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms.Results: In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions.Conclusions: The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting functions iteratively. The evaluation results demonstrated that in most cases, the iterative approach outperformed non-iterative ones with higher prediction quality in terms of prediction precision, recall and F-value

    Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins that interact in vivo tend to reside within the same or "adjacent" subcellular compartments. This observation provides opportunities to reveal protein subcellular localization in the context of the protein-protein interaction (PPI) network. However, so far, only a few efforts based on heuristic rules have been made in this regard.</p> <p>Results</p> <p>We systematically and quantitatively validate the hypothesis that proteins physically interacting with each other probably share at least one common subcellular localization. With the result, for the first time, four graph-based semi-supervised learning algorithms, Majority, <it>χ</it><sup>2</sup>-score, GenMultiCut and FunFlow originally proposed for protein function prediction, are introduced to assign "multiplex localization" to proteins. We analyze these approaches by performing a large-scale cross validation on a <it>Saccharomyces cerevisiae </it>proteome compiled from BioGRID and comparing their predictions for 22 protein subcellular localizations. Furthermore, we build an ensemble classifier to associate 529 unlabeled and 137 ambiguously-annotated proteins with subcellular localizations, most of which have been verified in the previous experimental studies.</p> <p>Conclusions</p> <p>Physical interaction of proteins has actually provided an essential clue for their co-localization. Compared to the local approaches, the global algorithms consistently achieve a superior performance.</p

    Interaction site prediction by structural similarity to neighboring clusters in protein-protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, revealing the function of proteins with protein-protein interaction (PPI) networks is regarded as one of important issues in bioinformatics. With the development of experimental methods such as the yeast two-hybrid method, the data of protein interaction have been increasing extremely. Many databases dealing with these data comprehensively have been constructed and applied to analyzing PPI networks. However, few research on prediction interaction sites using both PPI networks and the 3D protein structures complementarily has explored.</p> <p>Results</p> <p>We propose a method of predicting interaction sites in proteins with unknown function by using both of PPI networks and protein structures. For a protein with unknown function as a target, several clusters are extracted from the neighboring proteins based on their structural similarity. Then, interaction sites are predicted by extracting similar sites from the group of a protein cluster and the target protein. Moreover, the proposed method can improve the prediction accuracy by introducing repetitive prediction process.</p> <p>Conclusions</p> <p>The proposed method has been applied to small scale dataset, then the effectiveness of the method has been confirmed. The challenge will now be to apply the method to large-scale datasets.</p

    A probabilistic framework to predict protein function from interaction data integrated with semantic knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The functional characterization of newly discovered proteins has been a challenge in the post-genomic era. Protein-protein interactions provide insights into the functional analysis because the function of unknown proteins can be postulated on the basis of their interaction evidence with known proteins. The protein-protein interaction data sets have been enriched by high-throughput experimental methods. However, the functional analysis using the interaction data has a limitation in accuracy because of the presence of the false positive data experimentally generated and the interactions that are a lack of functional linkage.</p> <p>Results</p> <p>Protein-protein interaction data can be integrated with the functional knowledge existing in the Gene Ontology (GO) database. We apply similarity measures to assess the functional similarity between interacting proteins. We present a probabilistic framework for predicting functions of unknown proteins based on the functional similarity. We use the leave-one-out cross validation to compare the performance. The experimental results demonstrate that our algorithm performs better than other competing methods in terms of prediction accuracy. In particular, it handles the high false positive rates of current interaction data well.</p> <p>Conclusion</p> <p>The experimentally determined protein-protein interactions are erroneous to uncover the functional associations among proteins. The performance of function prediction for uncharacterized proteins can be enhanced by the integration of multiple data sources available.</p

    Biological Process Linkage Networks

    Get PDF
    BACKGROUND. The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN). RESULTS. We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods. CONCLUSIONS. Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.Lynn and William Frankel Center for Computer Science; the Paul Ivanier center for robotics research and production; National Science Foundation (ITR-048715); National Human Genome Research Institute (1R33HG002850-01A1, R01 HG003367-01A1); National Institute of Health (U54 LM008748

    Unveiling Protein Functions through the Dynamics of the Interaction Network

    Get PDF
    Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes

    Protein Function Assignment through Mining Cross-Species Protein-Protein Interactions

    Get PDF
    Background: As we move into the post genome-sequencing era, an immediate challenge is how to make best use of the large amount of high-throughput experimental data to assign functions to currently uncharacterized proteins. We here describe CSIDOP, a new method for protein function assignment based on shared interacting domain patterns extracted from cross-species protein-protein interaction data. Methodology/Principal Findings: The proposed method is assessed both biologically and statistically over the genome of H. sapiens. The CSIDOP method is capable of making protein function prediction with accuracy of 95.42 % using 2,972 gene ontology (GO) functional categories. In addition, we are able to assign novel functional annotations for 181 previously uncharacterized proteins in H. sapiens. Furthermore, we demonstrate that for proteins that are characterized by GO, the CSIDOP may predict extra functions. This is attractive as a protein normally executes a variety of functions in different processes and its current GO annotation may be incomplete. Conclusions/Significance: It can be shown through experimental results that the CSIDOP method is reliable and practical in use. The method will continue to improve as more high quality interaction data becomes available and is readily scalable t

    WNP: A Novel Algorithm for Gene Products Annotation from Weighted Functional Networks

    Get PDF
    Predicting the biological function of all the genes of an organism is one of the fundamental goals of computational system biology. In the last decade, high-throughput experimental methods for studying the functional interactions between gene products (GPs) have been combined with computational approaches based on Bayesian networks for data integration. The result of these computational approaches is an interaction network with weighted links representing connectivity likelihood between two functionally related GPs. The weighted network generated by these computational approaches can be used to predict annotations for functionally uncharacterized GPs. Here we introduce Weighted Network Predictor (WNP), a novel algorithm for function prediction of biologically uncharacterized GPs. Tests conducted on simulated data show that WNP outperforms other 5 state-of-the-art methods in terms of both specificity and sensitivity and that it is able to better exploit and propagate the functional and topological information of the network. We apply our method to Saccharomyces cerevisiae yeast and Arabidopsis thaliana networks and we predict Gene Ontology function for about 500 and 10000 uncharacterized GPs respectively

    Accurate Protein Structure Annotation through Competitive Diffusion of Enzymatic Functions over a Network of Local Evolutionary Similarities

    Get PDF
    High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks

    Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species.</p> <p>Results</p> <p>We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (<it>MLH1</it>, <it>PMS2</it>, <it>EPHB4 </it>) and could confirm more than 73% of them based on evidence in the literature.</p> <p>Conclusions</p> <p>The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.</p
    corecore