37 research outputs found

    Molecular analysis of a variant type of familial amyloidotic polyneuropathy showing cerebellar ataxia and pyramidal tract signs

    Get PDF
    金沢大学がん研究所がん分子細胞制御A Japanese family with atypical type I familial amyloidotic polyneuropathy (FAP) in Iiyama, Japan, was studied. Most of the family members have dysfunctions of the central nervous system, in addition to typical symptoms of type I FAP. The transthyretin (TTR, also called prealbumin) gene of the atypical FAP (FAP-IY) was analyzed with recombinant DNA techniques and a RIA method. FAP-IY was found to have the mutation responsible for the methionine-for-valine substitution at position 30 of TTR, as in the case of typical type I FAP. However, analysis of DNA polymorphisms in the TTR locus showed that FAP-IY has a genetic background differing from that of the typical type I FAP. These observations lead to the consideration that a genetic factor(s) involved in the dysfunction of the central nervous system may locate in a chromosome region in close proximity to the TTR gene

    Multioperator Teleoperation of Multirobot Systems with Time Delay: Part II—Testbed Description

    Get PDF
    The Mechanical Engineering Laboratory (MEL)1 has been developing coordinated control technologies for multi-telerobot cooperation in a common environment remotely controlled from multiple operators physically distant from each other. Previously, we learned about how the transmission delay over the network deteriorates the performance of telerobots through simulations. To overcome the operator's delayed visual perception arising from network throughput limitations, we have suggested several coordinated control aids at the local operator site. The testbed facilitates experiments with physical robots for validation beyond simulation. This paper mainly discusses the details of the testbed and investigates the use of an online predictive simulator to assist the operator in coping with time delay over the network. Practically, a common data relay station is suggested to reduce the travel distance of the master data over the network and enable multirobot predictive simulation at one's master station. Operators control their master to get their telerobot to cooperate with the counterpart telerobot using the predictive simulator as well as video image feedback. Specifically, exploiting the audio-visual resources of the simulator, operators can detect a priori the possibility of collision and coordinate conflicting motions between telerobots. We have demonstrated an object rearrangement task by two telerobots and two operators via an ethernet LAN that is subject to simulated delays and evaluated the validity of the online predictive simulator in Multioperator-Multirobot (MOMR) tele-cooperation
    corecore