71 research outputs found

    Panmicrobial Oligonucleotide Array for Diagnosis of Infectious Diseases

    Get PDF
    To facilitate rapid, unbiased, differential diagnosis of infectious diseases, we designed GreeneChipPm, a panmicrobial microarray comprising 29,455 sixty-mer oligonucleotide probes for vertebrate viruses, bacteria, fungi, and parasites. Methods for nucleic acid preparation, random primed PCR amplification, and labeling were optimized to allow the sensitivity required for application with nucleic acid extracted from clinical materials and cultured isolates. Analysis of nasopharyngeal aspirates, blood, urine, and tissue from persons with various infectious diseases confirmed the presence of viruses and bacteria identified by other methods, and implicated Plasmodium falciparum in an unexplained fatal case of hemorrhagic feverlike disease during the Marburg hemorrhagic fever outbreak in Angola in 2004–2005

    Detection of Respiratory Viruses and Subtype Identification of Influenza A Viruses by GreeneChipResp Oligonucleotide Microarray

    Get PDF
    Acute respiratory infections are significant causes of morbidity, mortality, and economic burden worldwide. An accurate, early differential diagnosis may alter individual clinical management as well as facilitate the recognition of outbreaks that have implications for public health. Here we report on the establishment and validation of a comprehensive and sensitive microarray system for detection of respiratory viruses and subtyping of influenza viruses in clinical materials. Implementation of a set of influenza virus enrichment primers facilitated subtyping of influenza A viruses through the differential recognition of hemagglutinins 1 through 16 and neuraminidases 1 through 9. Twenty-one different respiratory virus species were accurately characterized, including a recently identified novel genetic clade of rhinovirus.Fil: Quan, Phenix-Lan. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Palacios, Gustavo. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Jabado, Omar J. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Conlan, Sean. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Hirschberg, David L. Stanford School of Medicine; Estados Unidos.Fil: Pozo, Francisco. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Jack, Philippa J. M. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: Cisterna, Daniel. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Renwick, Neil. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Hui, Jeffrey. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Drysdale, Andrew. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Amos-Ritchie, Rachel. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: Baumeister, Elsa. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Savy, Vilma. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Lager, Kelly M. USDA. National Animal Disease Center; Estados Unidos.Fil: Richt, Jürgen A. USDA. National Animal Disease Center; Estados Unidos.Fil: Boyle, David B. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: García-Sastre, Adolfo. Mount Sinai School of Medicine. Department of Microbiology and Emerging Pathogens Institute; Estados Unidos.Fil: Casas, Inmaculada. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Perez-Breña, Pilar. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Briese, Thomas. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Lipkin, W. Ian. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos

    Heart and Skeletal Muscle Inflammation of Farmed Salmon Is Associated with Infection with a Novel Reovirus

    Get PDF
    Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch's postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Get PDF
    BACKGROUND: Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-lepr(db)/lepr(db) (db/db) mouse. METHODS AND FINDINGS: We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was not significantly reversed with rosiglitazone. In particular, we have uncovered a number of rosiglitazone modulated genes and pathways that may play a role in the pathophysiology of the increase in cardiac mortality as seen in several recent meta-analyses. Specifically, the cumulative upregulation of (1) a matrix metalloproteinase gene that has previously been implicated in plaque rupture, (2) potassium channel genes involved in membrane potential maintenance and action potential generation, and (3) sphingolipid and ceramide metabolism-related genes, together give cause for concern over rosiglitazone's safety. Lastly, in vivo imaging studies revealed minimal differences between rosiglitazone-treated and untreated db/db mouse hearts, indicating that rosiglitazone's effects on gene expression in the heart do not immediately turn into detectable gross functional changes. CONCLUSIONS: This study maps the genomic expression patterns in the hearts of the db/db murine model of diabetes and illustrates the impact of rosiglitazone on these patterns. The db/db gene expression signature was markedly different from control, and was not reversed with rosiglitazone. A smaller number of unique and interesting changes in gene expression were noted with rosiglitazone treatment. Further study of these genes and molecular pathways will provide important insights into the cardiac decompensation associated with both diabetes and rosiglitazone treatment

    VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane

    Get PDF
    The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes
    corecore