16,218 research outputs found

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, ÎĄ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when ÎĄ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (Ď€,0)(\pi,0) direction and their absence along the (Ď€,Ď€)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model

    Full text link
    A one-dimensional model of electrons locally coupled to spin-1/2 degrees of freedom is studied by numerical techniques. The model is one in the class of dynamicdynamic HubbardHubbard modelsmodels that describe the relaxation of an atomic orbital upon double electron occupancy due to electron-electron interactions. We study the parameter regime where pairing occurs in this model by exact diagonalization of small clusters. World line quantum Monte Carlo simulations support the results of exact diagonalization for larger systems and show that kinetic energy is lowered when pairing occurs. The qualitative physics of this model and others in its class, obtained through approximate analytic calculations, is that superconductivity occurs through hole undressing even in parameter regimes where the effective on-site interaction is strongly repulsive. Our numerical results confirm the expected qualitative behavior, and show that pairing will occur in a substantially larger parameter regime than predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published in Phys.Rev.

    Explanation of the Tao effect

    Full text link
    In a series of experiments Tao and coworkers\cite{tao1,tao2,tao3} found that superconducting microparticles in the presence of a strong electrostatic field aggregate into balls of macroscopic dimensions. No explanation of this phenomenon exists within the conventional theory of superconductivity. We show that this effect can be understood within an alternative electrodynamic description of superconductors recently proposed that follows from an unconventional theory of superconductivity. Experiments to test the theory are discussed.Comment: Submitted to Science January 2nd, declined January 6th; to Nature January 7th, declined January 13th; to PRL January 14th, declined February 25t

    Invisible Higgs Boson Decays in Spontaneously Broken R-Parity

    Get PDF
    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the Standard Model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate non-zero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the Next to Minimal Supersymmetric Standard Model (NMSSM) scenario for solving the ÎĽ\mu-problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.Comment: 24 pages, 10 figures; typos corrected, published versio

    Electronic dynamic Hubbard model: exact diagonalization study

    Full text link
    A model to describe electronic correlations in energy bands is considered. The model is a generalization of the conventional Hubbard model that allows for the fact that the wavefunction for two electrons occupying the same Wannier orbital is different from the product of single electron wavefunctions. We diagonalize the Hamiltonian exactly on a four-site cluster and study its properties as function of band filling. The quasiparticle weight is found to decrease and the quasiparticle effective mass to increase as the electronic band filling increases, and spectral weight in one- and two-particle spectral functions is transfered from low to high frequencies as the band filling increases. Quasiparticles at the Fermi energy are found to be more 'dressed' when the Fermi level is in the upper half of the band (hole carriers) than when it is in the lower half of the band (electron carriers). The effective interaction between carriers is found to be strongly dependent on band filling becoming less repulsive as the band filling increases, and attractive near the top of the band in certain parameter ranges. The effective interaction is most attractive when the single hole carriers are most heavily dressed, and in the parameter regime where the effective interaction is attractive, hole carriers are found to 'undress', hence become more like electrons, when they pair. It is proposed that these are generic properties of electronic energy bands in solids that reflect a fundamental electron-hole asymmetry of condensed matter. The relation of these results to the understanding of superconductivity in solids is discussed.Comment: Small changes following referee's comment

    Electromotive forces and the Meissner effect puzzle

    Get PDF
    In a voltaic cell, positive (negative) ions flow from the low (high) potential electrode to the high (low) potential electrode, driven by an `electromotive force' which points in opposite direction and overcomes the electric force. Similarly in a superconductor charge flows in direction opposite to that dictated by the Faraday electric field as the magnetic field is expelled in the Meissner effect. The puzzle is the same in both cases: what drives electric charges against electromagnetic forces? I propose that the answer is also the same in both cases: kinetic energy lowering, or `quantum pressure'

    Testing the Mechanism of R-parity Breaking with Slepton LSP Decays

    Get PDF
    In supersymmetric models R-parity can be violated through either bilinear or trilinear terms in the superpotential, or both. If charged scalar leptons are the lightest supersymmetric particles, their decay properties can be used to obtain information about the relative importance of these couplings. We show that in some specific scenarios it is even possible to decide whether bilinear or trilinear terms give the dominant contribution to the neutrino mass matrix.Comment: Intro rewritten, Fig 1 and Fig 4 slightly changed, conclusions unchanged, 25 pages, 4 figure

    Evolving text classification rules with genetic programming

    Get PDF
    We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications
    • …
    corecore