23,146 research outputs found
Predicted electric field near small superconducting ellipsoids
We predict the existence of large electric fields near the surface of
superconducting bodies of ellipsoidal shape of dimensions comparable to the
penetration depth. The electric field is quadrupolar in nature with significant
corrections from higher order multipoles. Prolate (oblate) superconducting
ellipsoids are predicted to exhibit fields consistent with negative (positive)
quadrupole moments, reflecting the fundamental charge asymmetry of matter.Comment: To be published in Phys.Rev.Let
Superconductivity from Undressing
Photoemission experiments in high cuprates indicate that quasiparticles
are heavily 'dressed' in the normal state, particularly in the low doping
regime. Furthermore these experiments show that a gradual undressing occurs
both in the normal state as the system is doped and the carrier concentration
increases, as well as at fixed carrier concentration as the temperature is
lowered and the system becomes superconducting. A similar picture can be
inferred from optical experiments. It is argued that these experiments can be
simply understood with the single assumption that the quasiparticle dressing is
a function of the local carrier concentration. Microscopic Hamiltonians
describing this physics are discussed. The undressing process manifests itself
in both the one-particle and two-particle Green's functions, hence leads to
observable consequences in photoemission and optical experiments respectively.
An essential consequence of this phenomenology is that the microscopic
Hamiltonians describing it break electron-hole symmetry: these Hamiltonians
predict that superconductivity will only occur for carriers with hole-like
character, as proposed in the theory of hole superconductivity
Improved design of electrophoretic equipment for rapid sickle-cell-anemia screening
Effective mass screening may be accomplished by modifying existing electrophoretic equipment in conjunction with multisample applicator used with cellulose-acetate-matrix test paper. Using this method, approximately 20 to 25 samples can undergo electrophoresis in 5 to 6 minutes
Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model
A one-dimensional model of electrons locally coupled to spin-1/2 degrees of
freedom is studied by numerical techniques. The model is one in the class of
that describe the relaxation of an atomic orbital
upon double electron occupancy due to electron-electron interactions. We study
the parameter regime where pairing occurs in this model by exact
diagonalization of small clusters. World line quantum Monte Carlo simulations
support the results of exact diagonalization for larger systems and show that
kinetic energy is lowered when pairing occurs. The qualitative physics of this
model and others in its class, obtained through approximate analytic
calculations, is that superconductivity occurs through hole undressing even in
parameter regimes where the effective on-site interaction is strongly
repulsive. Our numerical results confirm the expected qualitative behavior, and
show that pairing will occur in a substantially larger parameter regime than
predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published
in Phys.Rev.
Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates
Experimental evidence indicates that the superconducting transition in high
cuprates is an 'undressing' transition. Microscopic mechanisms giving
rise to this physics were discussed in the first paper of this series. Here we
discuss the calculation of the single particle Green's function and spectral
function for Hamiltonians describing undressing transitions in the normal and
superconducting states. A single parameter, , describes the strength
of the undressing process and drives the transition to superconductivity. In
the normal state, the spectral function evolves from predominantly incoherent
to partly coherent as the hole concentration increases. In the superconducting
state, the 'normal' Green's function acquires a contribution from the anomalous
Green's function when is non-zero; the resulting contribution to
the spectral function is for hole extraction and for hole
injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along the
direction and their absence along the direction.Comment: figures have been condensed in fewer pages for easier readin
Meissner effect, Spin Meissner effect and charge expulsion in superconductors
The Meissner effect and the Spin Meissner effect are the spontaneous
generation of charge and spin current respectively near the surface of a metal
making a transition to the superconducting state. The Meissner effect is well
known but, I argue, not explained by the conventional theory, the Spin Meissner
effect has yet to be detected. I propose that both effects take place in all
superconductors, the first one in the presence of an applied magnetostatic
field, the second one even in the absence of applied external fields. Both
effects can be understood under the assumption that electrons expand their
orbits and thereby lower their quantum kinetic energy in the transition to
superconductivity. Associated with this process, the metal expels negative
charge from the interior to the surface and an electric field is generated in
the interior. The resulting charge current can be understood as arising from
the magnetic Lorentz force on radially outgoing electrons, and the resulting
spin current can be understood as arising from a spin Hall effect originating
in the Rashba-like coupling of the electron magnetic moment to the internal
electric field. The associated electrodynamics is qualitatively different from
London electrodynamics, yet can be described by a small modification of the
conventional London equations. The stability of the superconducting state and
its macroscopic phase coherence hinge on the fact that the orbital angular
momentum of the carriers of the spin current is found to be exactly ,
indicating a topological origin. The simplicity and universality of our theory
argue for its validity, and the occurrence of superconductivity in many classes
of materials can be understood within our theory.Comment: Submitted to SLAFES XX Proceeding
Correcting 100 years of misunderstanding: electric fields in superconductors, hole superconductivity, and the Meissner effect
From the outset of superconductivity research it was assumed that no
electrostatic fields could exist inside superconductors, and this assumption
was incorporated into conventional London electrodynamics. Yet the London
brothers themselves initially (in 1935) had proposed an electrodynamic theory
of superconductors that allowed for static electric fields in their interior,
which they unfortunately discarded a year later. I argue that the Meissner
effect in superconductors necessitates the existence of an electrostatic field
in their interior, originating in the expulsion of negative charge from the
interior to the surface when a metal becomes superconducting. The theory of
hole superconductivity predicts this physics, and associated with it a
macroscopic spin current in the ground state of superconductors ("Spin Meissner
effect"), qualitatively different from what is predicted by conventional
BCS-London theory. A new London-like electrodynamic description of
superconductors is proposed to describe this physics. Within this theory
superconductivity is driven by lowering of quantum kinetic energy, the fact
that the Coulomb repulsion strongly depends on the character of the charge
carriers, namely whether electron- or hole-like, and the spin-orbit
interaction. The electron-phonon interaction does not play a significant role,
yet the existence of an isotope effect in many superconductors is easily
understood. In the strong coupling regime the theory appears to favor local
charge inhomogeneity. The theory is proposed to apply to all superconducting
materials, from the elements to the high cuprates and pnictides, is
highly falsifiable, and explains a wide variety of experimental observations.Comment: Proceedings of the conference "Quantum phenomena in complex matter
2011 - Stripes 2011", Rome, 10 July -16 July 2011, to be published in J.
Supercond. Nov. Mag
R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay
We consider contributions of R-parity conserving softly broken supersymmetry
(SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating
sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY
model with a Majorana neutrino mass. The new R-parity conserving SUSY
contributions to \znbb are realized at the level of box diagrams. We derive
the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and
the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to
the Majorana neutrino mass is also derived.
Given the data on the \znbb-decay half-life of Ge and the neutrino
mass we obtain constraints on the (B-L)-violating sneutrino mass. These
constraints leave room for accelerator searches for certain manifestations of
the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most
probably too tight for first generation (B-L)-violating sneutrino masses to be
searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study
Dynamic Hubbard models have been proposed as extensions of the conventional
Hubbard model to describe the orbital relaxation that occurs upon double
occupancy of an atomic orbital. These models give rise to pairing of holes and
superconductivity in certain parameter ranges. Here we explore the changes in
carrier effective mass and quasiparticle weight and in one- and two-particle
spectral functions that occur in a dynamic Hubbard model upon pairing, by exact
diagonalization of small systems. It is found that pairing is associated with
lowering of effective mass and increase of quasiparticle weight, manifested in
transfer of spectral weight from high to low frequencies in one- and
two-particle spectral functions. This 'undressing' phenomenology resembles
observations in transport, photoemission and optical experiments in high T_c
cuprates. This behavior is contrasted with that of a conventional electron-hole
symmetric Holstein-like model with attractive on-site interaction, where
pairing is associated with 'dressing' instead of 'undressing'
- …