14,282 research outputs found

    Occupation numbers in Self Consistent RPA

    Get PDF
    A method is proposed which allows to calculate within the SCRPA theory the occupation numbers via the single particle Green function. This scheme complies with the Hugenholtz van Hove theorem. In an application to the Lipkin model it is found that this prescription gives consistently better results than two other commonly used approximations: lowest order boson expansion and the number operator method.Comment: 25 pages, 10 figures, submitted to Nucl. Phys.

    Excited bands in odd-mass rare-earth nuclei

    Full text link
    Normal parity bands are studied in 157Gd, 163Dy and 169Tm using the pseudo SU(3) shell model. Energies and B(E2) transition strengths of states belonging to six low-lying rotational bands with the same parity in each nuclei are presented. The pseudo SU(3) basis includes states with pseudo-spin 0 and 1, and 1/2 and 3/2, for even and odd number of nucleons, respectively. States with pseudo-spin 1 and 3/2 must be included for a proper description of some excited bands.Comment: 8 pages, 6 figures, Submitted to Phys. Rev.

    Microscopic description of the scissors mode in odd-mass heavy deformed nuclei

    Get PDF
    Pseudo-SU(3) shell-model results are reported for M1 excitation strengths in 157-Gd, 163-Dy and 169-Tm in the energy range between 2 and 4 MeV. Non-zero pseudo-spin couplings between the configurations play a very important role in determining the M1 strength distribution, especially its rapidly changing fragmentation pattern which differs significantly from what has been found in neighboring even-even systems. The results suggest one should examine contributions from intruder levels.Comment: 5 pages, 3 figure

    Microscopic mass estimations

    Full text link
    The quest to build a mass formula which have in it the most relevant microscopic contributions is analyzed. Inspired in the successful Duflo-Zuker mass description, the challenges to describe the shell closures in a more transparent but equally powerful formalism are discussed.Comment: 14 pages, 6 figures, submitted to Journal of Physics G, Focus issue on Open Problems in Nuclear Structure Theor

    k-Color Multi-Robot Motion Planning

    Full text link
    We present a simple and natural extension of the multi-robot motion planning problem where the robots are partitioned into groups (colors), such that in each group the robots are interchangeable. Every robot is no longer required to move to a specific target, but rather to some target placement that is assigned to its group. We call this problem k-color multi-robot motion planning and provide a sampling-based algorithm specifically designed for solving it. At the heart of the algorithm is a novel technique where the k-color problem is reduced to several discrete multi-robot motion planning problems. These reductions amplify basic samples into massive collections of free placements and paths for the robots. We demonstrate the performance of the algorithm by an implementation for the case of disc robots and polygonal robots translating in the plane. We show that the algorithm successfully and efficiently copes with a variety of challenging scenarios, involving many robots, while a simplified version of this algorithm, that can be viewed as an extension of a prevalent sampling-based algorithm for the k-color case, fails even on simple scenarios. Interestingly, our algorithm outperforms a well established implementation of PRM for the standard multi-robot problem, in which each robot has a distinct color.Comment: 2
    • …
    corecore