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Abstract

Pseudo-SU(3) shell-model results are reported for M1 excitation strengths in157Gd, 163Dy and169Tm in the energy range
between 2 and 4 MeV. Non-zero pseudo-spin couplings between the configurations play a very important role in determining
the M1 strength distribution, especially its rapidly changing fragmentation pattern which differs significantly from what has
been found in neighboring even–even systems. The results suggest one should examine contributions from intruder levels.
 2002 Elsevier Science B.V.
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The scissors mode in nuclei refers to a pictorial
image of deformed proton and neutron distributions
oscillating against one another [1]. A description of
this mode within the framework of the IBM [2] led to
its detection in156Gd using high-resolution inelastic
electron scattering [3]. Systematic studies employing
nuclear resonance fluorescence scattering (NRF) mea-
surements [4] followed. The non-observation of these
low-energy M1 excitations in inelastic proton scatter-
ing (IPS) [5] confirmed its orbital character [6]. Over
the past two decades an impressive wealth of informa-
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tion about the scissors mode in even–even nuclei has
been obtained and analyzed [7].

Low-energy M1 transitions in odd-mass nuclei
were first observed in163Dy in 1993 [8]. Unambigu-
ous spin and parity assignments of excited states in
these nuclei are difficult to make due to the half-integer
character of the angular momentum of the states [9].
Furthermore, the M1 strengths in odd-mass nuclei are
highly fragmented. Since the intensities are far smaller
than in even–even nuclei, their identification against
the background [10], which is complicated by the pres-
ence of a small amount of impurities in the target [7],
requires much higher experimental resolution [11].

Theoretical descriptions of scissors modes in odd-
mass nuclei have been offered within the context of the
IBFM [12,13], the particle–core-coupling model [14]
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and the QPNM [15]. While the different models agree
in relating the presence of the uncoupled nucleon with
the observed fragmentation, the detailed description
of this mode, with a nearly flat spectrum in some
nuclei and has well-defined peaks in others is still not
understood. Recently, the interplay between the spin
and orbital M1 channels was examined [16] in the
energy range between 4–10 MeV [17].

In the present Letter we analyze scissors-like M1
transitions in157Gd, 163Dy and 169Tm. These nu-
clei have been studied experimentally by a number
of researchers [8,9,18]. A fully microscopic descrip-
tion of M1 transitions strengths between 2 and 4 MeV
in these rare-earth nuclei was carried out using the
pseudo-SU(3) shell model. Good qualitative descrip-
tions of the fragmentation of the M1 transition strength
is obtained by including, for the first time, states with
pseudo-spin 1 (in addition tõS = 0) and 3/2 (in ad-
dition to S̃ = 1/2). For normal parity levels our find-
ings suggest that while orbital couplings are important,
in odd–even mass nuclei it is spin-flip type couplings
that dominate M1 strengths in the low-energy domain.
These spin-flip type transitions were also found to
be essential for describing the rapidly changing frag-
mentation patterns found in neighboring odd-A nuclei.
Freezing the unique parity orbitals, which is the usual
assumption, prevents the theory from giving a quanti-
tative description of the M1 strength, a result that is not
surprising since intruder states have the largestl val-
ues and therefore contribute maximally to orbital-type
M1 transitions.

The pseudo-SU(3) model [19,20] capitalizes on
the existence of pseudo-spin symmetry, which refers
to the experimental fact that single-particle orbitals
with j = l − 1/2 andj = (l − 2) + 1/2 in the shell
η lie very close in energy and can therefore be la-
beled as pseudo-spin doublets with quantum numbers
j̃ = j , η̃ = η − 1, andl̃ = l − 1. Its origin has been
traced back to the relativistic Dirac equation [21].
In the present version of the pseudo-SU(3) model,
the intruder level with opposite parity in each major
shell is removed from active consideration [22] and
pseudo-orbital and pseudo-spin quantum numbers are
assigned to the remaining single-particle states. This
assumption represents the strongest limitation of the
present model.

Many-particle states ofnα active nucleons (α =
p, n) in a given (N ) normal parity shellηN

α are

classified by the following group chain [23–25]:{
1nN

α
} {f̃α} {fα} γα (λα, µα) S̃α Kα

U
(
�N

α

)⊃U
(
�N

α /2
)× U(2) ⊃ SU(3) × SU(2)

(1)
L̃α Jα

⊃SO(3)×SU(2)⊃SUJ (2),

where above each group the quantum numbers that
characterize its irreducible representations (irreps) are
given andγα and Kα are multiplicity labels of the
indicated reductions.

The Hamiltonian used in the calculations includes
spherical Nilsson single-particle terms for the protons
and neutrons (Hsp,π[ν]), the quadrupole–quadrupole
(Q̃ · Q̃) and pairing (Hpair,π[ν]) interactions, as well as
three ‘rotor-like’ terms that are diagonal in the SU(3)
basis:

H = Hsp,π + Hsp,ν − 1

2
χQ̃ · Q̃ − Gπ Hpair,π

(2)− GνHpair,ν + aK2
J + bJ 2 + AsymC̃2.

A detailed analysis of each term of this Hamiltonian
and its parametrization can be found in [25]. The
three free parametersa, b, Asym were fixed by the best
reproduction of the low-energy spectra; no additional
parameters enter into the theory—the calculated M1
transitions reported below were not fit to the data.

A description of the low-energy spectra and B(E2)
transition strengths in even–even nuclei [26] and odd-
mass heavy deformed nuclei [25,27] have been car-
ried out using linear combinations of SU(3) cou-
pled proton–neutron irreps with largestC2 values and
pseudo-spin 0 and 1/2 (for even and odd number
of nucleons, respectively), which are mixed by the
single-particle terms in the Hamiltonian.

The large number of states that can decay through
M1 transitions to the ground state in odd-mass nuclei,
led us to enlarge the basis by including states with
pseudo-spin 1 and 3/2. These configurations are
necessary to describe excited rotational bands and
to account for the strong fragmentation of the M1
strengths between 2 and 4 MeV in odd-mass nuclei.

The inclusion of configurations with pseudo-spin 1
and 3/2 in the Hilbert space allows for a description
of highly excited rotational bands in odd-mass nuclei.
This is illustrated in Ref. [28], where several rotational
bands in 157Gd, 163Dy and 169Tm are described,
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including both excitation energies and intra- and inter-
band B(E2) transition strengths, and shown to be
in close agreement with the experimental data. In
contrast, when the configuration space was restricted
to the most spatially symmetric configurations, those
with pseudo-spin 0 and 1/2, it was only possible to
describe in163Dy the first three low-energy bands
[27]. The pseudo-spin symmetry is still approximately
preserved in the present case, with these three low-
energy bands showing only a small amount of pseudo-
spin 1 and 3/2 admixing into predominantly pseudo-
spin 0 and 1/2 configurations, respectively.

The M1 transitions are mediated by the operator

(3)T 1
µ =

√
3

4π
µN

{
go

π Lπ
µ + gS

π Sπ
µ + go

νLν
µ + gS

ν Sν
µ

}
with

Lπ,[ν] =
Z,[N]∑

i

lπ,[ν](i),

(4)Sπ,[ν] =
Z,[N]∑

i

sπ,[ν](i).

In Eq. (3) the orbital and ‘quenched’ (by a factor of
0.7) sping factors for protons and neutrons are used:

go
π = 1, go

ν = 0,

gS
π = (0.7)5.5857,

(5)gS
ν = −(0.7)3.8263.

To evaluate the M1 transition operator between eigen-
states of the Hamiltonian (2), the pseudo-SU(3) ten-
sorial expansion of the T1 operator (3) [24] was em-
ployed.

In what follows, the B(M1;J π
i → J π

f ) transitions

in 157Gd, 163Dy and 169Tm are presented.J π
i refers

to the ground states 3/2−, 5/2− and 1/2+ in these
nuclei. In each figure, insert (a) corresponds to the
experimental results, while insert (b) represents the
theoretical values obtained with the T1 operator of
Eq. (3). Insert (c) shows the values withgo

π,ν in Eq. (3)
set to zero, i.e., with only the spin part of the T1
operator taken into account, and insert (d) shows the
results withgs

π,ν in Eq. (3) set to zero, i.e., including
only the orbital part of T1.

The differences between the M1 transition strength
distribution in157Gd,163Dy and169Tm, shown Figs. 1,

Fig. 1. Distribution of M1 transitions between 2 and 4 MeV for
157Gd. Insert (a) shows the experimental values [9], insert (b) shows
the theoretical with the complete T1 operator, insert (c) shows the
values withgo

π,ν = 0 (only the spin channel) and insert (d) with
gs

π,ν = 0 (only the orbital channel).

2, and 3 respectively (notice the change on the scale),
are both striking and well-known [10]. In157Gd there
are 88 known M1 transitions between 2 and 4 MeV,
all smaller than 0.05µ2 and distributed in a nearly flat
spectrum. In163Dy the M1 transition strengths are dis-
tributed only among 17 peaks, clustered in three well-
defined groups, and most of them have strengths be-
tween 0.1 and 0.2µ2. 169Tm has an intermediate de-
gree of fragmentation, with some clustered structures
and many transitions on the order of 0.1µ2.

Using an enlarged version of pseudo-SU(3) shell-
model theory described above, we obtained a micro-
scopic description of these M1 transitions and their
fragmentation in the three nuclei. The gross features
of the M1 strength distributions in each of the nuclei
are clearly reproduced, i.e., the different fragmentation
patterns. On the other hand, for157Gd and163Dy the
M1 strength distributions are displaced toward higher
energies by about 0.75 MeV and the total sums are
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Fig. 2. M1 transitions for163Dy. Convention is the same as in Fig. 1.
Experimental values taken from Ref. [8].

underestimated. This effect could be related with the
absence of spin dependent terms in the Hamiltonian
(2). For 169Tm the distribution in energy of the M1
strengths is correct, but some transition strengths are
overestimated by a factor 2 to 3.

The ground state wave functions of the two nuclei
with odd number of neutrons,157Gd and163Dy, have
one important difference. In163Dy the ground state
has only pseudo-spin 0 and 1/2 components, while
157Gd has a 13% mixing with pseudo-spin 1 and 3/2
components. In the M1 transition matrix elements
the presence of these components in the later case
gives rise to interference and fragmentation, while
its absence in the former nuclei is associated with
few large M1 transitions. The odd proton number of
169Tm allows orbital proton excitations between half-
integer components, building up its large M1 summed
transition strength.

Having analyzed the similarities and differences
between the experimental data and the theoretical
predictions, we proceed to discuss the spin and orbital
contributions to the M1 transitions. In insert (c) of

Fig. 3. M1 transitions for169Tm. Convention is the same as in
Fig. 1. Experimental values were taken from Ref. [18].

each figure the M1 transition strengths calculated
only with the spin operators, i.e., makinggo

π,ν = 0 in
Eq. (3), is presented. Insert (d) shows the M1 strength
when only the orbital part of the operator (3) are
included (gs

π,ν = 0). In all cases the spin coupling is
by far the dominant mode, but for169Tm the orbital
contribution is also large.

In the case of163Dy, there is an almost null contri-
bution from the orbital part of the transition operator
(0.103µ2), which in fact interferes destructively with
the spin channel (0.543µ2) to produce a summed M1
strength of 0.483µ2 in the scissors energy region.

The ‘angle’ between the orbital and spin channels,
as defined by Fayache et al. [16] is 110◦ for 163Dy. For
157Gd, this angle has a value of 83◦ and for169Tm it
is 96◦. From Table 1 it can be seen that below 2 MeV
the spin transitions are clearly dominant. Nevertheless,
it should be emphasized that contributions of the
intruder sector have been neglected.

The pseudo-SU(3) shell model for odd-mass nuclei
has been shown to offer a qualitative microscopic de-
scription of the scissors mode and its fragmentation. In
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Table 1
Summed B(M1;↑) strengths (inµ2) in the different energy regions

E < 2 MeV 2–4 MeV 4 MeV< E

157Gd Experiment [9] 1.596± 0.235
Theory 0.232 0.782 0.613
Spin only 0.138 0.389 0.371
Orbital only 0.084 0.308 0.385

163Dy Experiment [8] 1.641± 0.338
Theory 0.630 0.483 0.030
Spin only 0.908 0.543 0.026
Orbital only 0.088 0.103 0.012

169Tm Experiment [18] 1.912± 0.244 2.833± 0.812 0.515± 0.274
Theory 2.460 3.769 0.435
Spin only 2.245 2.332 0.164
Orbital only 1.483 1.838 0.321

order to successfully reproduce the observed fragmen-
tation of the M1 strength, it was necessary to use real-
istic values for the single particle energies and to en-
large the Hilbert space to include those pseudo-SU(3)
irreps with the largestC2 values and pseudo-spin 1
and 3/2. This expansion of the model space allowed
the T1 operator to connect the ground state with many
excited states (|Jf − Ji | � 1) in the energy range be-
tween 2 and 4 MeV. The transitions are dominated by
spin couplings, but interference with the orbital mode
is very important.

A fully quantitative treatment of the problem should
take into account contribution from the intruder sector.
Detailed studies of M1 transitions in other odd-mass
nuclei are under investigation and should offer an op-
portunity to further apply and test the theory.
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