2,175 research outputs found
Nexus Authorization Logic (NAL): Logical Results
Nexus Authorization Logic (NAL) [Schneider et al. 2011] is a logic for
reasoning about authorization in distributed systems. A revised version of NAL
is given here, including revised syntax, a revised proof theory using localized
hypotheses, and a new Kripke semantics. The proof theory is proved sound with
respect to the semantics, and that proof is formalized in Coq
Belief Semantics of Authorization Logic
Authorization logics have been used in the theory of computer security to
reason about access control decisions. In this work, a formal belief semantics
for authorization logics is given. The belief semantics is proved to subsume a
standard Kripke semantics. The belief semantics yields a direct representation
of principals' beliefs, without resorting to the technical machinery used in
Kripke semantics. A proof system is given for the logic; that system is proved
sound with respect to the belief and Kripke semantics. The soundness proof for
the belief semantics, and for a variant of the Kripke semantics, is mechanized
in Coq
A graph-theoretic condition for irreducibility of a set of cone preserving matrices
Given a closed, convex and pointed cone K in R^n , we present a result which infers K-irreducibility of sets of K-quasipositive matrices from strong connectedness of certain bipartite digraphs. The matrix-sets are defined via products, and the main result is relevant to applications in biology and chemistry. Several examples are presented
Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity
Kepler-1656b is a 5 planet with an orbital period of 32 days initially
detected by the prime Kepler mission. We obtained precision radial velocities
of Kepler-1656 with Keck/HIRES in order to confirm the planet and to
characterize its mass and orbital eccentricity. With a mass of ,
Kepler-1656b is more massive than most planets of comparable size. Its high
mass implies that a significant fraction, roughly 80%, of the planet's total
mass is in high density material such as rock/iron, with the remaining mass in
a low density H/He envelope. The planet also has a high eccentricity of , the largest measured eccentricity for any planet less than 100
. The planet's high density and high eccentricity may be the result of one
or more scattering and merger events during or after the dispersal of the
protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa
Assessing the Effect of Stellar Companions from High-Resolution Imaging of Kepler Objects of Interest
We report on 176 close (<2") stellar companions detected with high-resolution
imaging near 170 hosts of Kepler Objects of Interest. These Kepler targets were
prioritized for imaging follow-up based on the presence of small planets, so
most of the KOIs in these systems (176 out of 204) have nominal radii <6 R_E .
Each KOI in our sample was observed in at least 2 filters with adaptive optics,
speckle imaging, lucky imaging, or HST. Multi-filter photometry provides color
information on the companions, allowing us to constrain their stellar
properties and assess the probability that the companions are physically bound.
We find that 60 -- 80% of companions within 1" are bound, and the bound
fraction is >90% for companions within 0.5"; the bound fraction decreases with
increasing angular separation. This picture is consistent with simulations of
the binary and background stellar populations in the Kepler field. We also
reassess the planet radii in these systems, converting the observed
differential magnitudes to a contamination in the Kepler bandpass and
calculating the planet radius correction factor, . Under the assumption that planets in bound binaries are equally
likely to orbit the primary or secondary, we find a mean radius correction
factor for planets in stellar multiples of . If stellar
multiplicity in the Kepler field is similar to the solar neighborhood, then
nearly half of all Kepler planets may have radii underestimated by an average
of 65%, unless vetted using high resolution imaging or spectroscopy.Comment: 23 pages, 12 figures. Accepted for publication in The Astronomical
Journa
Long-Period Giant Companions to Three Compact, Multiplanet Systems
Understanding the relationship between long-period giant planets and multiple smaller short-period planets is critical for formulating a complete picture of planet formation. This work characterizes three such systems. We present Kepler-65, a system with an eccentric (e = 0.28 ± 0.07) giant planet companion discovered via radial velocities (RVs) exterior to a compact, multiply transiting system of sub-Neptune planets. We also use precision RVs to improve mass and radius constraints on two other systems with similar architectures, Kepler-25 and Kepler-68. In Kepler-68 we propose a second exterior giant planet candidate. Finally, we consider the implications of these systems for planet formation models, particularly that the moderate eccentricity in Kepler-65\u27s exterior giant planet did not disrupt its inner system
Recommended from our members
The importance of early immunotherapy in patients with faciobrachial dystonic seizures.
Faciobrachial dystonic seizures and limbic encephalitis closely associate with antibodies to leucine-rich glioma-inactivated 1 (LGI1). Here, we describe 103 consecutive patients with faciobrachial dystonic seizures and LGI1 antibodies to understand clinical, therapeutic and serological differences between those with and without cognitive impairment, and to determine whether cessation of faciobrachial dystonic seizures can prevent cognitive impairment. The 22/103 patients without cognitive impairment typically had normal brain MRI, EEGs and serum sodium levels (P < 0.0001). Overall, cessation of faciobrachial dystonic seizures with antiepileptic drugs alone occurred in only 9/89 (10%) patients. By contrast, 51% showed cessation of faciobrachial dystonic seizures 30 days after addition of immunotherapy (P < 0.0001), with earlier cessation in cognitively normal patients (P = 0.038). Indeed, expedited immunotherapy (P = 0.031) and normal cognition (P = 0.0014) also predicted reduced disability at 24 months. Furthermore, of 80 patients with faciobrachial dystonic seizures as their initial feature, 56% developed cognitive impairment after 90 days of active faciobrachial dystonic seizures. Whereas only one patient developed cognitive impairment after cessation of faciobrachial dystonic seizures (P < 0.0001). All patients had IgG4-LGI1 antibodies, but those with cognitive impairment had higher proportions of complement-fixing IgG1 antibodies (P = 0.03). Both subclasses caused LGI1-ADAM22 complex internalization, a potential non-inflammatory epileptogenic mechanism. In summary, faciobrachial dystonic seizures show striking time-sensitive responses to immunotherapy, and their cessation can prevent the development of cognitive impairment.awx323media15681705685001
The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars
We present stellar and planetary properties for 1305 Kepler Objects of
Interest (KOIs) hosting 2025 planet candidates observed as part of the
California-Kepler Survey. We combine spectroscopic constraints, presented in
Paper I, with stellar interior modeling to estimate stellar masses, radii, and
ages. Stellar radii are typically constrained to 11%, compared to 40% when only
photometric constraints are used. Stellar masses are constrained to 4%, and
ages are constrained to 30%. We verify the integrity of the stellar parameters
through comparisons with asteroseismic studies and Gaia parallaxes. We also
recompute planetary radii for 2025 planet candidates. Because knowledge of
planetary radii is often limited by uncertainties in stellar size, we improve
the uncertainties in planet radii from typically 42% to 12%. We also leverage
improved knowledge of stellar effective temperature to recompute incident
stellar fluxes for the planets, now precise to 21%, compared to a factor of two
when derived from photometry.Comment: 13 pages, 4 figures, 4 tables, accepted for publication in AJ; full
versions of tables 3 and 4 are include
The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets
The size of a planet is an observable property directly connected to the
physics of its formation and evolution. We used precise radius measurements
from the California-Kepler Survey (CKS) to study the size distribution of 2025
planets in fine detail. We detect a factor of 2 deficit
in the occurrence rate distribution at 1.5-2.0 R. This gap splits
the population of close-in ( < 100 d) small planets into two size regimes:
R < 1.5 R and R = 2.0-3.0 R, with few planets in
between. Planets in these two regimes have nearly the same intrinsic frequency
based on occurrence measurements that account for planet detection
efficiencies. The paucity of planets between 1.5 and 2.0 R supports
the emerging picture that close-in planets smaller than Neptune are composed of
rocky cores measuring 1.5 R or smaller with varying amounts of
low-density gas that determine their total sizes.Comment: Paper III in the California-Kepler Survey series, accepted to the
Astronomical Journa
- …
