617 research outputs found

    Vlasov simulation in multiple spatial dimensions

    Full text link
    A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown promising results, in this paper we present an alternative, the Vlasov Multi Dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement

    Semiclassical Gravity in the Far Field Limit of Stars, Black Holes, and Wormholes

    Get PDF
    Semiclassical gravity is investigated in a large class of asymptotically flat, static, spherically symmetric spacetimes including those containing static stars, black holes, and wormholes. Specifically the stress-energy tensors of massless free spin 0 and spin 1/2 fields are computed to leading order in the asymptotic regions of these spacetimes. This is done for spin 0 fields in Schwarzschild spacetime using a WKB approximation. It is done numerically for the spin 1/2 field in Schwarzschild, extreme Reissner-Nordstrom, and various wormhole spacetimes. And it is done by finding analytic solutions to the leading order mode equations in a large class of asymptotically flat static spherically symmetric spacetimes. Agreement is shown between these various computational methods. It is found that for all of the spacetimes considered, the energy density and pressure in the asymptotic region are proportional to 1/r^5 to leading order. Furthermore, for the spin 1/2 field and the conformally coupled scalar field, the stress-energy tensor depends only on the leading order geometry in the far field limit. This is also true for the minimally coupled scalar field for spacetimes containing either a static star or a black hole, but not for spacetimes containing a wormhole.Comment: 43 pages, 2 figures. Reference added, minor changes, PRD versio

    Stress-Energy Tensor for the Massless Spin 1/2 Field in Static Black Hole Spacetimes

    Full text link
    The stress-energy tensor for the massless spin 1/2 field is numerically computed outside and on the event horizons of both charged and uncharged static non-rotating black holes, corresponding to the Schwarzschild, Reissner-Nordstrom and extreme Reissner-Nordstr\"om solutions of Einstein's equations. The field is assumed to be in a thermal state at the black hole temperature. Comparison is made between the numerical results and previous analytic approximations for the stress-energy tensor in these spacetimes. For the Schwarzschild (charge zero) solution, it is shown that the stress-energy differs even in sign from the analytic approximation. For the Reissner-Nordstrom and extreme Reissner-Nordstrom solutions, divergences predicted by the analytic approximations are shown not to exist.Comment: 5 pages, 4 figures, additional discussio

    TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control

    Get PDF
    The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1

    Optimizing postprandial glucose management in adults with insulin-requiring diabetes: Report and recommendations

    Get PDF
    Faster-acting insulins, new noninsulin drug classes, more flexible insulin-delivery systems, and improved continuous glucose monitoring devices offer unprecedented opportunities to improve postprandial glucose (PPG) management and overall care for adults with insulin-treated diabetes. These developments led the Endocrine Society to convene a working panel of diabetes experts in December 2018 to assess the current state of PPG management, identify innovative ways to improve self-management and quality of life, and align best practices to current and emerging treatment and monitoring options. Drawing on current research and collective clinical experience, we considered the following issues for the ∼200 million adults worldwide with type 1 and insulin-requiring type 2 diabetes: (i) the role of PPG management in reducing the risk of diabetes complications; (ii) barriers preventing effective PPG management; (iii) strategies to reduce PPG excursions and improve patient quality of life; and (iv) education and clinical tools to support endocrinologists in improving PPG management. We concluded that managing PPG to minimize or prevent diabetes-related complications will require elucidating fundamental questions about optimal ways to quantify and clinically assess the metabolic dysregulation and consequences of the abnormal postprandial state in diabetes and recommend research strategies to address these questions. We also identified practical strategies and tools that are already available to reduce barriers to effective PPG management, optimize use of new and emerging clinical tools, and improve patient self-management and quality of life

    Estimating encounter location distributions from animal tracking data

    Get PDF
    1. Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounter rates while the relationship between individual movement and the spatial locations of encounter events in the environment has remained conspicuously understudied. 2. Here, we bridge this gap by introducing a method for describing the long-term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open-source software and demonstrate the broad ecological relevance of this distribution. 3. We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation-based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white-faced capuchins Cebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizards Tiliqua rugosa, tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location-specific encounter probability. 4. The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via the ctmm R package

    Optimal Brain MRI Protocol for New Neurological Complaint

    Get PDF
    Background/Purpose Patients with neurologic complaints are imaged with MRI protocols that may include many pulse sequences. It has not been documented which sequences are essential. We assessed the diagnostic accuracy of a limited number of sequences in patients with new neurologic complaints. Methods: 996 consecutive brain MRI studies from patients with new neurological complaints were divided into 2 groups. In group 1, reviewers used a 3-sequence set that included sagittal T1-weighted, axial T2-weighted fluid-attenuated inversion recovery, and axial diffusion-weighted images. Subsequently, another group of studies were reviewed using axial susceptibility-weighted images in addition to the 3 sequences. The reference standard was the study's official report. Discrepancies between the limited sequence review and the reference standard including Level I findings (that may require immediate change in patient management) were identified. Results: There were 84 major findings in 497 studies in group 1 with 21 not identified in the limited sequence evaluations: 12 enhancing lesions and 3 vascular abnormalities identified on MR angiography. The 3-sequence set did not reveal microhemorrhagic foci in 15 of 19 studies. There were 117 major findings in 499 studies in group 2 with 19 not identified on the 4-sequence set: 17 enhancing lesions and 2 vascular lesions identified on angiography. All 87 Level I findings were identified using limited sequence (56 acute infarcts, 16 hemorrhages, and 15 mass lesions). Conclusion: A 4-pulse sequence brain MRI study is sufficient to evaluate patients with a new neurological complaint except when contrast or angiography is indicated

    Computed Tomography-Derived 3D Modeling to Guide Sizing and Planning of Transcatheter Mitral Valve Interventions

    Get PDF
    A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed
    • …
    corecore